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A Additional bivariate categorical response simulation

studies and details

A.1 Alternative tuning parameter selection criterion

In this section, we present simulation study results under exactly the data generating mod-

els described in Section 6, but using a different tuning parameter selection criterion for each

method. In these studies, we select tuning parameters by maximizing the log-likelihood eval-

uated on the validation set: for example, see equation (5) of Price et al. (2019). As in the

main manuscript, we measure joint misclassification accuracy and average Kullback-Leibler

divergence, the latter of which we define as

n−1
test

ntest∑
i=1

J∑
j=1

K∑
k=1

log

(
P̂ (Yi1 = j, Yi2 = k | xi)
P (Yi1 = j, Yi2 = k | xi)

)
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where P̂ (Yi1 = j, Yi2 = k | xi) is an estimate of P (Yi1 = j, Yi2 = k | xi) based on some

particular fitted model. We also record and report average test set Hellinger distance, which

is defined as
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Figure 4: Joint misclassification rates under Models 1–4 with p ∈ {100, 300, 500, 1000, 2000}
and tuning parameters chosen to maximize the validation likelihood.

In Figures 4, 5, and 6 we display the joint misclassification rates, average KL divergence,

and average Hellinger distance under exactly the data generating models in Section 6, but

with tuning parameters chosen to maximize the validation likelihood. As can be seen com-

paring these results to those from Section 6, the metric used to select tuning parameters does

have an effect on the results. While, the relative performances of each methods is essentially

unchanged; and the classification accuracy decreases whereas the KL divergence and Hellinger

distances are larger than when selecting tuning parameters by minimizing the validation mis-

classification rate.

A.2 Additional performance metrics and details

In Figure 7 and 8, we display the average test set Hellinger distances and marginal misclas-

sification rates, respectively, under the same data generating models and tuning parameter

selection criterion as in Section 6. In Figure 9, we provide a visualization of the groups being

penalized by both the overlapping group lasso (OG-Mult) and latent group lasso (LG-Mult)

estimators described in Section 6.
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Figure 5: Square-root average Kullback-Leibler diverence under Models 1–4 with p ∈
{100, 300, 500, 1000, 2000} and tuning parameters chosen to maximize the validation likeli-
hood.

B Results with J = 4 and K = 3

In this section, we present simulation studies essentially identical to those from Section 6, but

with J = 4 and K = 3. The data generating models differ only in how β∗ is constructed under

Models 2–4. In this setting, we simply find a V such that V ∈ Null(D′) and set the rows of

β∗ corresponding to predictors affecting only marginal distributions to be equal to V u ∈ R12

where u ∈ R6 with each element drawn independently from Uniform(−3, 3). This way, for

each βj,: = V u, we have that βj,: 6= 012, but D′βj,: = 012.

Misclassification rates and average KL divergences are displayed in Figures 10 and 11. The

performance of the methods relative to one another is quite similar to the settings where J = 3

and K = 2. In general, each method performs slightly worse, which can be easily explained by

the fact that with more response categories, lower classification accuracy (even for the oracle)

is expected.
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Figure 6: Average Hellinger distance under Models 1–4 with p ∈ {100, 300, 500, 1000, 2000}
and tuning parameters chosen to maximize the validation likelihood.

C Trivariate categorical response simulations

In this section, we present results from a simulation study in which we considered a trivariate

response. That is, we have three response variables with J = K = L = 2 categories each and

P (Y1 = j, Y2 = k, Y3 = l | x) =
exp(x′β∗:,j,k,l)∑J

s=1

∑K
t=1

∑L
u=1 exp(x′β∗:,s,t,u)

for (j, k, l) ∈ {1, 2}×{1, 2}×{1, 2}. Define the matricized version of β∗ as β∗ ∈ Rp×JKL where

β∗:,j,k,l = β∗:,h(j,k,l) where h(j, k, l) = (k − 1)J + j + (l − 1)JK. We will compare four methods

for estimating the mass function of (Y1, Y2, Y3 | x) : LO-Mult, G-Mult, L-Mult, and Sep.
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Figure 7: Average Hellinger distance under Models 1–4 with p ∈ {100, 300, 500, 1000, 2000}
and tuning parameters chosen as in Section 6.

C.1 Implementation

In order to implement LO-Mult, we must first construct D as described in Section 5. Recalling

that under the mapping h,

β = (β:,1,1,1,β:,2,1,1,β:,1,2,1,β:,2,2,1,β:,1,1,2,β:,2,1,2,β:,1,2,2,β:,2,2,2) ∈ Rp×JKL,

so that we have

D′ =



1 −1 −1 1 0 0 0 0

0 0 0 0 1 −1 −1 1

1 −1 0 0 −1 1 0 0

0 0 1 −1 0 0 −1 1

1 0 −1 0 −1 0 1 0

0 1 0 −1 0 −1 0 1

 . (16)

Note that this is D matrix is constructed according to the discussion on Section 5.1. To

apply Algorithm 1 to the trivariate setting, we need only consider how to solve (11) with D
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Figure 8: Marginal misclassification rates (for the J-category response variable) under Models
1–4 with p ∈ {100, 300, 500, 1000, 2000}.

(
βj,1,1 βj,1,2 βj,1,3
βj,2,1 βj,2,2 βj,2,3

) (
βj,1,1 βj,1,2 βj,1,3
βj,2,1 βj,2,2 βj,2,3

) (
βj,1,1 βj,1,2 βj,1,3
βj,2,1 βj,2,2 βj,2,3

)
(
βj,1,1 βj,1,2 βj,1,3
βj,2,1 βj,2,2 βj,2,3

) (
βj,1,1 βj,1,2 βj,1,3
βj,2,1 βj,2,2 βj,2,3

)
Figure 9: The groups of parameters which are penalized by both the overlapping and latent
group-penalized multivariate multinomial estimators in (14) and (15) with J = 2 and K = 3
for j = 2, . . . , p.

as defined above. For this purpose, we can straightforwardly apply Theorem 2; however, the

closed form solution for (iii) in Proposition 1 no longer holds. In this setting, to obtain a τ

which satisfies Theorem 2 (iii), we resort to a numeric root-solver to find τ . Note that the D

in (16) has 4 non-zero singular values: their values are (σ1, σ2, σ3, σ4) = (
√

12, 2, 2, 2). Hence,

by the same logic as in the proof of Proposition 1, letting wl = u′lν (where ul is the lth left
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Figure 10: Joint misclassification rates under Models 1–4 with p ∈ {100, 300, 500, 1000, 2000}
with J = 4 and K = 3.

singular vector of D), we need τ such that

rank(D)∑
l=1

w2
l σ

2
l

(σ2
l + τ)2

= λ2 =⇒ 12
w2

1

(12 + τ)2
+ 4

4∑
l=2

w2
l

(4 + τ)2
− λ2 = 0.

Under the conditions of Theorem 2 (iii), such a τ > 0 always exists and can be found using a

numeric root-solver in R, e.g., rootSolve. For problems with moderately sized J , K, and L,

this is can be done with reasonable efficiency.

C.2 Data generating models

To compare the various methods in the trivariate categorical response setting, we consider

four data generating models similar to those from Section 6. Just as in Section B, we first

obtain V ∈ Null(D′) for the D defined in (16). Then, we consider Models 5–8.

– Model 5: We randomly select 10 rows of β∗ ∈ Rp×JKL to be nonzero. Each of the

7
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Figure 11: Square-root average Kullback-Leibler divergence under Models 1–4 with p ∈
{100, 300, 500, 1000, 2000} with J = 4 and K = 3.

elements of these tens rows is set equal to independent realizations of a Uniform(−3, 3)

random variable.

– Model 8: We randomly select 10 rows of β∗ to be nonzero. For each row independently,

we generate four independent realizations of a Uniform(−3, 3) random variable. Given

these realizations, say (u1, u2, u3, u4), we set the row of β∗ equal to V u Under this

construction, we can see D′V u = 06.

Just as in Section 6, Models 6 and 7 are, in a sense, intermediate to Models 6 and 7.

– Model 6: We randomly select six rows of β∗ to be nonzero and consist elements which

are each independent realizations of a Uniform(−3, 3) random variable. Then, we select

an additional four rows of β∗ to be generated in the same manner as Model 4.

– Model 7: We randomly select three rows of β∗ to be nonzero and consist elements

which are each independent realizations of a Uniform(−3, 3) random variable. Then, we

select an additional seven rows of β∗ to be generated in the same manner as Model 4.
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Figure 12: Joint misclassification rates under Models 5–8 with p ∈ {100, 300, 500, 1000, 2000}
with J = K = L = 2.

As mentioned, in these simulation studies, we only consider the estimators LO-Mult, G-Mult,

L-Mult, Sep, and when appropriate, Oracle.

C.3 Results

In this section, we discuss results under Models 5–8. In Figure 12, we present the joint (i.e.,

trivariate) misclassification rates for each of the considered methods. Relative performances

are essentially the same as in the various bivariate settings considered previously. Under Model

5, LO-Mult and G-Mult perform similarly – which is to be expected for the same reasons as

described in Section 6. As we move from Model 5 to Models 6–8, we see that LO-Mult starts

to outperform G-Mult. Meanwhile, Sep begins to perform better as we move from Model 5

towards Model 8: in Model 8, Sep – which correctly assumes the responses are independent –

performs nearly as well as LO-Mult.

In Figure 13 and 14, we display both average Kullback-Leibler divergence and average

Hellinger distances for the various methods. Just as with classification accuracy, performances

largely agree with the bivariate setting. Of particular note is that as p grows, LO-Mult tends
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Figure 13: Square-root average Kullback-Leibler divergence under Models 5–8 with p ∈
{100, 300, 500, 1000, 2000} with J = K = L = 2.

to outperform competitors more relative to when, say, p = 100.

D Proofs of results in Section 4

In this and the following sections, for ease of display, we omit the subscript on 0 when refering

to a matrix or vector of zeros. The key to proving Theorem 2 is the following lemma1, which

reveals that we need only concern ourselves with computing η̂λ̄,0.

Lemma 1. Let η̂λ̄,γ̄ be a minimizer of (11) and let η̂λ̄,0 be the minimizer of (11) with γ̄ = 0.

Then

η̂λ̄,γ̄ =

{ (
1− γ̄

‖η̂λ̄,0‖2

)
η̂λ̄,0 : ‖η̂λ̄,0‖2 > γ̄

0 : ‖η̂λ̄,0‖2 ≤ γ̄
(17)

Proof of Lemma 1. To prove Lemma 1, we show that first-order conditions for η̂λ̄,0 imply

the first-order conditions for η̂λ̄,γ̄ as defined in (17). First, recall that the zero subgradient

1A previous version of the Supplementary Materials contained a typo in the statement of this lemma.
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Figure 14: Average Hellinger distance under Models 5–8 with p ∈ {100, 300, 500, 1000, 2000}
with J = K = L = 2.

equation for η̂λ̄,0 is

0 = −ν + η̂λ̄,0 + λ̄Dφ̃ (18)

for some φ̃ such that φ̃ = D′η̂λ̄,0/‖D′η̂λ̄,0‖2 if [D′η̂λ̄,0] 6= 0 and ‖φ̃‖2 ≤ 1 otherwise (i.e., φ̃ is a

subgradient of η 7→ ‖D′η‖2 at η̂λ̄,0). Then, recall that the zero subgradient equation for η̂λ̄,γ̄ is

0 = −ν + η̂λ̄,γ̄ + λ̄Dφ+ γ̄v, (19)

for (v, φ) ∈ RJK × R(J2)(
K
2 ) such that v = η̂λ̄,γ̄/‖η̂λ̄,γ̄‖2 if η̂λ̄,γ̄ 6= 0 and ‖v‖2 ≤ 1 otherwise; and

φ = D′η̂λ̄,η̄/‖D′η̂λ̄,η̄‖2 if D′η̂λ̄,η̄ 6= 0 and ‖φ‖2 ≤ 1 otherwise.

We will consider three cases: (i) ‖η̂λ̄,0‖2 > γ̄, (ii) 0 < ‖η̂λ̄,0‖2 ≤ γ̄, and (iii) η̂λ̄,0 = 0.

Case (i): We know from (18) that there exists a subgradient φ̃ such that

0 = −ν + η̂λ̄,0 + λ̄Dφ̃. (20)

We assume that ‖η̂λ̄,0‖2 > γ̄ so that η̂λ̄,γ̄ = η̂λ̄,0(1 − γ̄/‖η̂λ̄,0‖2). We will show that this η̂λ̄,γ̄

11



satisfies the first-order conditions (19). In particular, from (20), we have

0 = −ν + η̂λ̄,0 + λ̄Dφ̃

=⇒ 0 = −ν + η̂λ̄,0 + λ̄Dφ̃+ γ̄η̂λ̄,0/‖η̂λ̄,0‖2 − γ̄η̂λ̄,0/‖η̂λ̄,0‖2

=⇒ 0 = −ν + η̂λ̄,0(1− γ̄/‖η̂λ̄,0‖2) + λ̄Dφ̃+ γ̄η̂λ̄,0/‖η̂λ̄,0‖2

=⇒ 0 = −ν + η̂λ̄,0(1− γ̄/‖η̂λ̄,0‖2) + λ̄Dφ̃+ γ̄η̂λ̄,0(1− γ̄/‖η̂λ̄,0‖2)/‖η̂λ̄,0(1− γ̄/‖η̂λ̄,0‖2)‖2

=⇒ 0 = −ν + η̂λ̄,γ̄ + λ̄Dφ̃+ γ̄η̂λ̄,γ̄/‖η̂λ̄,γ̄‖2 (21)

Since ‖η̂λ̄,γ̄‖2 > 0 by assumption on η̂λ̄,0, we can take v = η̂λ̄,γ̄/‖η̂λ̄,γ̄‖2. It only remains to

check that φ̃ = φ where φ = D′η̂λ̄,γ̄/‖D′η̂λ̄,γ̄‖2 if D′η̂λ̄,γ̄ 6= 0 and ‖φ‖2 ≤ 1 otherwise. However,

this is trivial since η̂λ̄,γ̄ is a scalar multiple of η̂λ̄,0, so D′η̂λ̄,0 is a scalar multiple of D′η̂λ̄,γ̃.

Thus, if D′η̂λ̄,0 6= 0, then D′η̂λ̄,γ̄ 6= 0, whereas if D′η̂λ̄,0 = 0, then D′η̂λ̄,γ̄ = 0. In either case,

we can take φ = φ̃ so that finally, from (21),

0 = −ν + η̂λ̄,γ̄ + λ̄Dφ̃+ γ̄η̂λ̄,γ̄/‖η̂λ̄,γ̄‖2 =⇒ 0 = −ν + η̂λ̄,γ̄ + λ̄Dφ+ γ̄v

which verifies that η̂λ̄,γ̄ as defined in (17) satisfies the first-order optimality conditions for (11)

when ‖η̂λ̄,0‖2 > γ̄.

Case (ii): Assume 0 < ‖η̂λ̄,0‖2 ≤ γ̄. We will show that η̂λ̄,γ̄ = 0 satisfies the first-order

conditions for (11) given in (19). Recall that by definition, there exists a subgradient φ̃ such

that

0 = −ν + η̂λ̄,0 + λ̄Dφ̃. (22)

Since ‖η̂λ̄,0‖2 ≤ γ̄, 1 ≤ γ̄/‖η̂λ̄,0‖2, so we can write 1 = γ̄/‖η̂λ̄,0‖2− z1 for some z1 ≥ 0 and thus,

(22) implies

0 = −ν + η̂λ̄,0

(
γ̄

‖η̂λ̄,0‖2

− z1

)
+ λ̄Dφ̃

which in turn implies

0 = −ν + η̂λ̄,γ̄ + λ̄Dφ̃+ γ̄

(
η̂λ̄,0
‖η̂λ̄,0‖2

−
z1η̂λ̄,0
γ̄

)
(23)

since η̂λ̄,γ̄ = 0 by assumption. Then, because we must have ‖φ‖2 ≤ 1, we can simply take

φ = φ̃ since ‖φ̃‖2 ≤ 1 regardless of whether D′η̂λ̄,0 = 0 or D′η̂λ̄,0 6= 0. Thus, (23) suggets that

η̂λ̄,γ̄ = 0 satisfies the first-order conditions for (11) as long as∥∥∥∥ η̂λ̄,0
‖η̂λ̄,0‖2

−
z1η̂λ̄,0
γ̄

∥∥∥∥
2

≤ 1.
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Letting z2 = η̂λ̄,0/‖η̂λ̄,0‖2 so that ‖z2‖2 = 1, we have∥∥∥∥ η̂λ̄,0
‖η̂λ̄,0‖2

−
z1η̂λ̄,0
γ̄

∥∥∥∥
2

= ‖z2(1− γ̄−1z1‖η̂λ̄,0‖2)‖2 = ‖z2‖2

(
1−

z1‖η̂λ̄,0‖2

γ̄

)
=

(
1− z1

1 + z1

)
≤ 1.

Therefore, with v =
η̂λ̄,0
‖η̂λ̄,0‖2

− z1η̂λ̄,0
γ̄

, from (23) we can conclude,

0 = −ν + η̂λ̄,γ̄ + λ̄Dφ̃+ γ̄

(
η̂λ̄,0
‖η̂λ̄,0‖2

−
z1η̂λ̄,0
γ̄

)
=⇒ 0 = −ν + η̂λ̄,γ̄ + λ̄Dφ+ γ̄v

for a (v, φ) ∈ RJK × R(J2)(
K
2 ) such that ‖v‖2 ≤ 1 and ‖φ‖2 ≤ 1, which is exactly the zero

subgradient equation when η̂λ̄,γ̄ = 0.

Case (iii): This case is trivial: to see that zero subgradient equation for η̂λ̄,0 = 0 implies the

zero subgradient equation for η̂λ̄,γ̄ = 0, simply take φ = φ̃ and v = 0. �

With Lemma 1 in place, we are ready to prove Theorem 2.

Proof of Theorem 2. Recall that the zero subgradient equation for η̂λ̄,γ̄ is

0 = −ν + η̂λ̄,γ̄ + λ̄Dφ+ γ̄v, (24)

where

v ∈ {v ∈ RJK : v = η̂λ̄,γ̄/‖η̂λ̄,γ̄‖2 if η̂λ̄,γ̄ 6= 0 and ‖v‖2 ≤ 1 otherwise},

and

φ ∈ {φ ∈ R(J2)(
K
2 ) : φ = D′η̂λ̄,η̄/‖D′η̂λ̄,η̄‖2 if D′η̂λ̄,η̄ 6= 0 and ‖φ‖2 ≤ 1 otherwise}.

We consider each of the three cases set out in the statement of Theorem 2. To deal with cases

(ii) and (iii), we focus on the solution for η̂λ̄,0 and then apply Lemma 1.

Case (i): If ‖ν‖2 ≤ γ̄, we can set η̂λ̄,γ̄ = 0, φ = 0, and v = ν/γ̄, so that ‖v‖2 ≤ 1, and thus,

η̂λ̄,γ̄ = 0 would satisfy the first-order conditions (24).

Case (ii): We consider the dual problem of (11) with γ̄ = 0 (e.g., see the derivation of a related

dual problem in Section 4 of Tibshirani et al. (2011)):

û ∈ arg min
u

‖ν −Du‖2
2, ‖u‖2 ≤ λ̄,

where η̂λ̄,0 = ν −Dû. Hence, if ‖(D′D)−D′ν‖2 ≤ λ̄, û = (D′D)−D′ν, so it would follow that

13



η̂λ̄,0 = ν −D(D′D)−D′ν = P⊥D,0ν. An application of Lemma 1 yields the second result.

Case (iii): We again consider the dual problem of (11) with γ̄ = 0. If ‖(D′D)−D′ν‖2 > λ̄,

it must be that the minimizer û is only the boundary of the constraint set {u : ‖u‖2 ≤ λ̄},
or equivalently, ‖û‖2

2 = λ̄2. Then, because there is a one-to-one correspondence between the

constrained version of ridge regression and its Lagrangian form when the constraint is active,

we know there exists a τ > 0 such that for every λ̄ satisfying the condition of (iii),

û = arg min
u:‖u‖22≤λ̄2

‖ν −Du‖2
2 = arg min

u
‖ν −Du‖2

2 + τ‖u‖2
2,

and thus, since (D′D+τI)−1D′ν minimizes the rightmost objective function above, if ‖(D′D+

τI)−1D′ν‖2
2 = λ̄2, we know û = (D′D+ τI)−1D′ν. The result then follows from ν −D(D′D+

τI)−1D′ν = P⊥D,τν and Lemma 1. �

Next, we provide a sketch of the proof of Proposition 1.

Proof of Proposition 1. Let UDiag
(
{σl}kl=1

)
V ′ be the singular value decomposition of D

where k = min(JK,
(
J
2

)(
K
2

)
), U ′U = Ik, V

′V = Ik, and σl ≥ 0 for l ∈ [k]. Note that by

construction, only the first r = (J − 1)(K − 1) singular values of D are nonzero (e.g., see

discussion of D versus D in Section 2). Then, letting Σ = Diag
(
{σl}kl=1

)
, we can write

(D′D + τI)−1D′ν = V (Σ2 + τI)−1ΣU ′ν

so that

‖(D′D + τI)−1D′ν‖2 = λ̄ ⇐⇒ ν ′UΣ(Σ2 + τI)−2ΣU ′ν = λ̄2.

Letting ul denote the lth column of U , we can define w = (w1, . . . , wk)
′ ∈ Rk where wl = u′lν ∈

R so that we may write

ν ′UΣ(Σ2 + τI)−2ΣU ′ν = w′Aw,

where A is diagonal with (l, l)th entry (σ2
l + τ)−2σ2

l . Thus, it follows that

w′Aw =
r∑
l=1

w2
l σ

2
l

(σ2
l + τ)2

,

which yields the first result. Then because for each l ∈ [r], σl =
√
JK, it further follows that

r∑
l=1

w2
l σ

2
l

(σ2
l + τ)2

= λ2 =⇒ JK
r∑
l=1

w2
l

(JK + τ)2
= λ2.

14



And thus, the previous equality implies

τ =

√
JK

∑r
l=1w

2
l

λ̄
− JK.

It is easy to check that under the conditions of (iii), this τ must be positive. �

Proof of Theorem 3. We again appeal to Lemma 1, which will give us the result for η̂λ̄,γ̄
once we have obtained the expression for η̂λ̄,0. We thus focus on the solution for η̂λ̄,0. Recall

that when J = K = 2, D′η̂λ̄,0 ∈ R and φ̃ ∈ R, where φ̃ = sign(D′η̂λ̄,0) if D′η̂λ̄,0 6= 0 and

φ̃ ∈ [−1, 1] otherwise. We consider all three cases enumerated in the statement of Theorem 3.

Let ν̈ = ν1 − ν2 − ν3 + ν4 and recall in this setting, D = (1,−1,−1, 1)′.

Case (iii): Suppose ν̈ < −4λ̄. If we let η̂λ̄,0 = (ν1 + λ̄, ν2− λ̄, ν3− λ̄, ν4 + λ̄)′, then the gradient

of the objective is

−ν + η̂λ̄,0 + λ̄Dsign(D′η̂λ̄,0) = −


ν1

ν2

ν3

ν4

+


ν1 + λ̄

ν2 − λ̄
ν3 − λ̄
ν4 + λ̄

− λ̄D
since

sign(D′η̂λ̄,0) = sign(ν1 + λ̄− (ν2 − λ̄)− (ν3 − λ̄) + ν4 + λ̄) = sign(ν̈ + 4λ̄) = −1

by our assumption ν̈ < −4λ̄. Hence, because

−


ν1

ν2

ν3

ν4

+


ν1 + λ̄

ν2 − λ̄
ν3 − λ̄
ν4 + λ̄

− λ̄


1

−1

−1

1

 = 0,

when ν̈ < −4λ̄, the first-order conditions

−ν + η̂λ̄,0 + λ̄Dsign(D′η̂λ̄,0) = 0

are satisfied with η̂λ̄,0 = (ν1 + λ̄, ν2 − λ̄, ν3 − λ̄, ν4 + λ̄)′.

Case (ii): When ν̈ > 4λ̄, the result follows from a nearly identical proof as in case (iii).

Case (i): Suppose |ν̈| ≤ 4λ̄. Let η̂λ̄,0 = (ν1 − ν̈/4, ν2 + ν̈/4, ν3 + ν̈/4, ν4 − ν̈/4)′. We want to
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show that

− ν + η̂λ̄,0 + λ̄Du = 0 (25)

for some u ∈ [−1, 1]. Notice,

−ν + η̂λ̄,0 + λ̄Du = −


ν1

ν2

ν3

ν4

+


ν1 + ν̈/4

ν2 − ν̈/4
ν3 − ν̈/4
ν4 + ν̈/4

+ λ̄


1

−1

−1

1

u =


ν̈/4

−ν̈/4
−ν̈/4
ν̈/4

+ λ̄


1

−1

−1

1

u.

Therefore, if we set u = −ν̈/(4λ̄), we know u ∈ [−1, 1] by assumption and thus,

−ν + η̂λ̄,0 + λ̄Du =


ν̈/4

−ν̈/4
−ν̈/4
ν̈/4

− λ̄


1

−1

−1

1

 ν̈/(4λ̄) = 0

so that the first-order conditions (25) are satisfied. �

E Proofs of results in Section 5

Proof of Lemma 1. It is straightforward to show, e.g., see Agresti (2002), that (12) implies

a). To show that the latter two log odds constraints imply b), notice with a) holding,

P (Y1 = j, Y2 = 1 | x, Y3 = l) = P (Y1 = j | x, Y3 = l)P (Y2 = 1 | x, Y3 = l), (j, l) ∈ [J ]× [L],

so that we can write, for all (j, l) ∈ [J − 1]× [L− 1],

P (Y1 = j | x, Y3 = l)P (Y1 = j + 1 | x, Y3 = l + 1)

P (Y1 = j + 1 | x, Y3 = l)P (Y1 = j | x, Y3 = l + 1)

=
P (Y1 = j | x, Y3 = l)P (Y1 = j + 1 | x, Y3 = l + 1)

P (Y1 = j + 1 | x, Y3 = l)P (Y1 = j | x, Y3 = l + 1)

P (Y2 = 1 | x, Y3 = l)P (Y2 = 1 | x, Y3 = l + 1)

P (Y2 = 1 | x, Y3 = l)P (Y2 = 1 | x, Y3 = l + 1)

=
P (Y1 = j, Y2 = 1 | x, Y3 = l)P (Y1 = j + 1, Y2 = 1 | x, Y3 = l + 1)

P (Y1 = j + 1, Y2 = 1 | x, Y3 = l)P (Y1 = j, Y2 = 1 | x, Y3 = l + 1)

and thus,

log

(
π∗j,1,l(x)π∗j+1,1,l+1(x)

π∗j+1,1,l(x)π∗j,1,l+1(x)

)
= 0, (j, l) ∈ [J − 1]× [L− 1]

16



implies

log

(
P (Y1 = j | x, Y3 = l)P (Y1 = j + 1 | x, Y3 = l + 1)

P (Y1 = j + 1 | x, Y3 = l)P (Y1 = j | x, Y3 = l + 1)

)
= 0, (j, l) ∈ [J − 1]× [L− 1]

which implies the left expression in b). The right expression in b) follows from the same set

of arguments, reversing the roles of Y1 and Y2. It is immediate that a) and b) together imply

(12). �

F Proof of Theorem 1

F.1 Main proof

We first provide a number of key lemmas which we use to establish the result in Theorem 1.

We provide proofs of these lemmas in the subsequent subsection.

In order to obtain our error bound, we use a property of the multinomial negative log-

likelihood closely related to self-concordance. We begin with a lemma from Bach (2010),

which defines the notion of ν-self-concordance and establishes an upper bound on the Taylor

expansion of any function satisfying the conditions of 2-self-concordance.

Lemma 2. (Proposition 1, Bach (2010)) Let F : Rq → R be a convex, three times differ-

entiable function such that for all w, v ∈ Rq, the function g(t) = F (w + tv) satisfies for all

t ∈ R, |∇3g(t)| ≤ R‖v‖2 · [∇2g(t)]ν/2 for some fixed constants ν > 0 and R ≥ 0. Then,

if such a R ≥ 0 exists for a given ν, F is said to be ν-self-concordant. Moreover, if F is

2-self-concordant, then for all w ∈ Rq and v ∈ Rq

F (w + v) ≥ F (w) + tr {v′∇F (w)}+
v′∇2F (w)v

R2‖v‖2
2

(e−R‖v‖2 +R‖v‖2 − 1),

for the corresponding R ≥ 0.

Following the proof of Lemma 4 from Tran-Dinh et al. (2015), we establish that G, the

(scaled) multinomial negative log-likelihood, is a 2-self concordant function. For completeness,

we include a proof in the next subsection.

Lemma 3. The function G̃ : Rp×JK → R satisfies the definition of 2-self-concordance with

R =
√

6 maxi∈[n] ‖Xi,:‖2.

Combining Lemma 2 and Lemma 3, we have that for any β† and ∆,

G̃(β† + ∆)− G̃(β†) ≥ tr{∆′∇G̃(β†)} (26)

+
vec(∆)′∇2G̃(β†)vec(∆)

d2
n‖∆‖2

F

(
e−dn‖∆‖F + dn‖∆‖F − 1

)
,
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where dn =
√

6 maxi∈[n] ‖Xi,:‖2. With (26) in hand, we then apply the proof technique outlined

in Negahban et al. (2012). First, we need another lemma, Lemma 4, which states that when

the tuning parameters are chosen appropriately, the error β̂ − β† belongs to the set C(S, φ).

The proof of Lemma 4 is given in the next subsection.

Lemma 4. If λ = φ2γ and γ > φ1‖∇G̃(β†)‖∞,2 where ‖A‖∞,2 = maxj ‖Aj,:‖2, then ∆̂ = β̂−β†
belongs to the set C(S, φ).

Lemma 5. Let

γ =
φ1εκ(S, φ)

c{(φ1 + 1)
√
|SL|+ |SM |+ φ1φ2ΨJ,K(SL)}

,

for some fixed constants c > 2, φ1 > 1, and φ2 > 0. If γ > φ1‖∇G(β†)‖∞,2 and ε > 0 is

sufficiently close to zero such that e−dnε + dnε− d2
nε

2/c− 1 > 0, then ‖β̂ − β†‖F ≤ ε.

Finally, we need to assign a probability to the event γ > φ1‖∇G̃(β†)‖∞,2 for a particular

choice of γ. Along these lines, we have the following lemma.

Lemma 6. Under assumption A1 and A2,

P

{
‖∇G̃(β†)‖∞,2 ≤

√
JK

4n
+

√
log(p/α)

n

}
≥ 1− α.

With all the pieces in place, we are now ready to prove Theorem 1.

Proof of Theorem 1. To prove Theorem 1, we combine Lemma 5 and Lemma 6. Specifically,

let γ = φ1{JK/(4n)}1/2 +φ1{log(p/α)/n}1/2, λ = φ2γ, and (following the first equality in the

statement of Lemma 5) take

ε =
γc{(φ1 + 1)

√
|SL|+ |SM |+ φ1φ2ΨJ,K(SL)}
φ1κ(S, φ)

=
c{(φ1 + 1)

√
|SL|+ |SM |+ φ1φ2ΨJ,K(SL)}

κ(S, φ)

{√
JK

4n
+

√
log(p/α)

n

}

where c > 2 is a fixed constant. Then, under Condition 1, e−dnε + dnε− d2
nε

2/c− 1 > 0 so that

it follows from applications of Lemma 5 and 6 that

P (‖β̂ − β∗‖F ≤ ε) ≥ P

{
‖∇G̃(β†)‖∞,2 ≤

√
JK

4n
+

√
log(p/α)

n

}
≥ 1− α. �

F.2 Proofs of results in Section F.1

Proof of Lemma 3. Our proof uses the same steps as the proof of Lemma 4 from Tran-Dinh

et al. (2015), although our result is different (by a factor of n). Let g̃(t) = G̃(A + tB) for
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matrices A ∈ Rp×JK and B ∈ Rp×JK . Then, we write g̃ as

g̃(t) = − 1

n

n∑
i=1

J∑
j=1

K∑
k=1

yi,j,k[x
′
iA:,j,k+t(x

′
iB:,j,k)]+

1

n

n∑
i=1

log

{
J∑
j=1

K∑
k=1

exp [x′iA·,j,k + t(x′iB·,j,k)]

}
.

Our objective is to show that g̃ satisfies the conditions from Lemma 2. However, note that the

second and third derivatives of g̃ depend only on the second term, so we show the conditions

hold instead for

g(t) =
1

n

n∑
i=1

log

{
J∑
j=1

K∑
k=1

exp [x′iA·,j,k + t(x′iB·,j,k)]

}
,

which would be sufficient for the desired result. Letting µi,j,k(t) = exp {x′iA·,j,k + t(x′iB·,j,k)}
and bi,j,k = x′iB·,j,k, we have

∇2g(t) =
1

n

n∑
i=1


∑J

j=1

∑K
k=1 b

2
i,j,kµi,j,k(t)∑J

j=1

∑K
k=1 µi,j,k(t)

−

[∑J
j=1

∑K
k=1 bi,j,kµi,j,k(t)∑J

j=1

∑K
k=1 µi,j,k(t)

]2


and also

∇3g(t) =
1

n

n∑
i=1


∑J

j=1

∑K
k=1 b

3
i,j,kµi,j,k(t)∑J

j=1

∑K
k=1 µi,j,k(t)

+ 2

[∑J
j=1

∑K
k=1 bi,j,kµi,j,k(t)∑J

j=1

∑K
k=1 µi,j,k(t)

]3

−
3
[∑J

j=1

∑K
k=1 b

2
i,j,kµi,j,k(t)

] [∑J
j=1

∑K
k=1 bi,j,kµi,j,k(t)

]
[∑J

j=1

∑K
k=1 µi,j,k(t)

]2


Next, we simplify ∇2g(t). Letting µi(t) =

∑J
j=1

∑K
k=1 µi,j,k(t), and letting

∑
j,k(resp.

∑
s,t)

denote
∑J

j=1

∑K
k=1 (resp.

∑J
s=1

∑K
t=1) for ease of display,

∇2g(t) =
1

n

n∑
i=1


µi(t)

[∑
j,k b

2
i,j,kµi,j,k(t)

]
−
[∑

j,k bi,j,kµi,j,k(t)
]2

µi(t)2


=

1

n

n∑
i=1

{∑
j,k

∑
s,t(bi,j,k − bi,s,t)2µi,j,k(t)µi,s,t(t)

2µi(t)2

}
=

1

n

n∑
i=1

∇2gi(t). (27)
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Based on (27), we can see that the second derivative is positive since the µi,j,k(t) are all

positive. It can also be verified that

∇3g(t) =
1

n

n∑
i=1


∑

j,k

∑
s,t(bi,j,k − bi,s,t)2µi,j,k(t)µi,s,t(t)

[∑
l,m(bi,j,k + bi,s,t − 2bi,l,m)µi,l,m(t)

]
2µi(t)3

 ,

so that using the same approach from Tran-Dinh et al. (2015), we see

|∇3g(t)| ≤ 1

n

n∑
i=1

∣∣∣∣∣∣

∑

j,k

∑
s,t(bi,j,k − bi,s,t)2µi,j,k(t)µi,s,t(t)

[∑
l,m(bi,j,k + bi,s,t − 2bi,l,m)µi,l,m(t)

]
2µi(t)3


∣∣∣∣∣∣

≤ 1

n

n∑
i=1


∑

j,k

∑
s,t(bi,j,k − bi,s,t)2µi,j,k(t)µi,s,t(t)

[∑
l,m µi,l,m(t)

√
6(b2

i,j,k + b2
i,s,t + b2

i,l,m)
]

2µi(t)3


so that taking bi = (bi,1,1, . . . , bi,J,K)′ ∈ RJK , the previous inequality implies

|∇3g(t)| ≤ 1

n

n∑
i=1


∑

j,k

∑
s,t(bi,j,k − bi,s,t)2µi,j,k(t)µi,s,t(t)

[√
6‖bi‖2

∑
l,m µi,l,m(t)

]
2µi(t)3


=

1

n

n∑
i=1

√
6‖bi‖2

{∑
j,k

∑
s,t(bi,j,k − bi,s,t)2µi,j,k(t)µi,s,t(t)

2µi(t)2

}

=
1

n

n∑
i=1

√
6‖bi‖2∇2gi(t) =

√
6

n

n∑
i=1

‖x′iB‖2∇2gi(t) ≤
√

6

n

n∑
i=1

‖Xi,:‖2‖B‖F∇2gi(t)

≤
√

6 max
i∈[n]
‖Xi,:‖2‖B‖F

(
1

n

n∑
i=1

∇2gi(t)

)
=
√

6 max
i∈[n]
‖Xi,:‖2‖B‖F∇2g(t)

and thus, with R =
√

6 maxi∈[n] ‖Xi,:‖2, we have the desired result

|∇3g(t)| ≤ R‖B‖F∇2g(t). �

We prove Lemma 4 after Lemma 5 since it relies on arguments outlined in Lemma 5.

Proof of Lemma 5. First, we define the set Bε,φ =
{

∆ ∈ Rp×JK : ‖∆‖F = ε,∆ ∈ C(S, φ)
}

and the function H(∆) = Fλ,γ(β†+∆)−Fλ,γ(β†). Following the same argument as in Molstad

and Rothman (2018), since the objective function in (6), Fλ,γ, is convex and because β̂ is its

global minimizer, as long as γ > φ1‖∇G̃(β†)‖∞,2, we know that inf {H(∆) : ∆ ∈ Bε,φ} > 0

implies ‖β̂−β†‖F ≤ ε. See Lemma 4 of Negahban et al. (2012) for a proof of this fact. Hence,
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our goal is to show H(∆) > 0 for all ∆ ∈ Bε,φ under the conditions of the lemma statement.

First, we have

H(∆) = G(β† + ∆)− G(β†)︸ ︷︷ ︸
T1

+ γ(‖β† + ∆‖1,2 − ‖β†‖1,2)︸ ︷︷ ︸
T2

(28)

+ γφ2(‖β†D + ∆D‖1,2 − ‖β†D‖1,2)︸ ︷︷ ︸
T3

We begin by bounding T1. Applying Lemma 3, using (26) and assumption A2, it follows that

T1 ≥ tr
{

∆′∇G(β†)
}

+
vec(∆)′∇2G̃(β†)vec(∆)

d2
n‖∆‖2

F

(
e−dn‖∆‖F + dn‖∆‖F − 1

)
≥ −‖∆‖1,2‖∇G(β†)‖∞,2 +

vec(∆)′∇2G̃(β†)vec(∆)

d2
n‖∆‖2

F

(
e−dn‖∆‖F + dn‖∆‖F − 1

)
(29)

where (29) follows from Hölder’s inequality. Then, since ∆ ∈ Bε,φ implies ∆ ∈ C(S, φ), by

definition of κ(S, φ), the inequality (29) implies

T1 ≥ −‖∆‖1,2‖∇G̃(β†)‖∞,2 +
κ(S, φ)

d2
n

(
e−dn‖∆‖F + dn‖∆‖F − 1

)
.

≥ − γ

φ1

‖∆‖1,2 +
κ(S, φ)

d2
n

(
e−dn‖∆‖F + dn‖∆‖F − 1

)
. (30)

where (30) holds because γ > φ1‖∇G(β†)‖∞,2 by assumption. Next, we bound T2 and T3.

Recall that SL, SM , and SI are sets of predictors where β†SL,: 6= 0, β†SM ,: 6= 0, and β†SI ,: = 0;

β†SL,:D 6= 0, β†SM ,:D = 0, and β†SI ,:D = 0. By the triangle inequality, we have

T2 = γ(‖β† + ∆‖1,2 − ‖β†‖1,2)

= γ(‖β†SL∪SM ,: + ∆SL∪SM ,:‖1,2 + ‖∆SI ,:‖1,2 − ‖β†SL∪SM ,:‖1,2)

≥ γ(‖∆SI ,:‖1,2 − ‖∆SL∪SM ,:‖1,2)

Similarly, for T3,

T3 = γφ2(‖β†D + ∆D‖1,2 − ‖β†D‖1,2) ≥ γφ2(‖∆SI∪SM ,:D‖1,2 − ‖∆SL,:D‖1,2).
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Then, putting (30) together with the bounds for T2 and T3,

H(∆) ≥ − γ

φ1

‖∆‖1,2 +
κ(S, φ)

d2
n

(
e−dn‖∆‖F + dn‖∆‖F − 1

)
+ T2 + T3 (31)

≥ − γ

φ1

(‖∆SI ,:‖1,2 + ‖∆SL∪SM ,:‖1,2) +
κ(S, φ)

d2
n

(
e−dn‖∆‖F + dn‖∆‖F − 1

)
+ γ(‖∆SI ,:‖1,2 − ‖∆SL∪SM ,:‖1,2) + T3

≥ κ(S, φ)

d2
n

(
e−dn‖∆‖F + dn‖∆‖F − 1

)
− γ(φ1 + 1)

φ1

(‖∆SL∪SM ,:‖1,2) + T3.

By plugging in the bound for T3, this implies

H(∆) ≥ κ(S, φ)

d2
n

(
e−dn‖∆‖F + dn‖∆‖F − 1

)
− γ(φ1 + 1)

φ1

(‖∆SL∪SM ,:‖1,2)

+ γφ2(‖∆SI∪SM ,:D‖1,2 − ‖∆SL,:D‖1,2)

≥ κ(S, φ)

d2
n

(
e−dn‖∆‖F + dn‖∆‖F − 1

)
− γ(φ1 + 1)

φ1

(‖∆SL∪SM ,:‖1,2)− γφ2‖∆SL,:D‖1,2.

Then, since ΨJ,K(SL) = supM 6=0,M∈Rp×JK ‖MSL,:D‖1,2/‖M‖F , and using the fact that ‖∆SL∪SM ,:‖1,2 ≤√
|SL|+ |SM |‖∆‖F , the previous inequality implies

H(∆) ≥ κ(S, φ)

d2
n

(
e−dn‖∆‖F + dn‖∆‖F − 1

)
− γ‖∆‖F

{
(φ1 + 1)

φ1

√
|SL|+ |SM |+ φ2ΨJ,K(SL)

}
so that for ∆ ∈ Bε,φ, i.e., ‖∆‖F = ε and ∆ ∈ C(S, φ),

=
κ(S, φ)

d2
n

(
e−dnε + dnε− 1

)
− γε

{
(φ1 + 1)

φ1

√
|SL|+ |SM |+ φ2ΨJ,K(SL)

}
.

Thus, for constant c > 2, with

γ =
φ1εκ(S, φ)

c{(φ1 + 1)
√
|SL|+ |SM |+ φ1φ2ΨJ,K(SL)}

,

it follows that

H(∆) ≥ κ(S, φ)

d2
n

(
e−dnε + dnε− 1

)
− κ(S, φ)d2

n

d2
nc

ε2 =
κ(S, φ)

d2
n

(
e−dnε + dnε−

d2
nε

2

c
− 1

)
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so that for ε sufficiently close to zero,(
e−dnε + dnε−

d2
nε

2

c
− 1

)
> 0,

which yields the desired result. �

Proof of Lemma 4. Note that letting ∆̂ = β̂ − β†, we know that H(∆̂) as defined in (28) is

non-positive. Hence, because e−x + x− 1 > 0 for all x > 0, by the arguments used to obtain

(31),

0 ≥ H(∆̂) ≥ − γ

φ1

(‖∆̂SI ,:‖1,2 + ‖∆̂SL∪SM ,:‖1,2) + γ(‖∆̂SI ,:‖1,2 − ‖∆̂SL∪SM ,:‖1,2)

+ γφ2(‖∆̂SI∪SM ,:D‖1,2 − ‖∆̂SL,:D‖1,2)

which implies

0 ≥ (φ1 − 1)

φ1

‖∆̂SI ,:‖2 −
(φ1 + 1)

φ1

‖∆̂SL∪SM ,:‖1,2 + φ2(‖∆̂SI∪SM ,:D‖1,2 − ‖∆̂SL,:D‖1,2)

so that

(φ1 + 1)

φ1

‖∆̂SL∪SM ,:‖1,2 + φ2‖∆̂SL,:D‖1,2 ≥
(φ1 − 1)

φ1

‖∆̂SI ,:‖1,2 + φ2‖∆̂SI∪SM ,:D‖1,2,

the desired result. �

We prove Lemma 6 below. First, we state an important inequality which is key to our proof.

McDiarmid’s Inequality. Let X1, . . . , Xn be independent random variables each taking val-

ues in the set X . Let f : X × · · · × X → R. If for each i ∈ [n], the function f satisfies

|f(X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn)− f(X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn)| ≤ ci

for all (X1, . . . , Xn) and any X̃i ∈ X , then, for every ε > 0,

P {f(X1, . . . , Xn) ≥ Ef(X1, . . . , Xn) + ε} ≤ exp

(
−2ε2∑n
i=1 c

2
i

)
.

We are now ready to prove Lemma 6.
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Proof of Lemma 6. First, notice that ∇G̃(β†) = n−1X ′W where X = (x1, . . . , xn)′ ∈
Rn×p and the ith row of W , Wi,: ∈ RJK , can be expressed Wi,: = vec{π∗(xi)} − vec(Yi)
for i ∈ [n]. To simplify notation, we will let vi = vec(Yi) ∈ RJK and π∗i = vec{π∗(xi)} =

(π∗1,1(xi), . . . , π
∗
J,K(xi))

′ ∈ RJK . We will use vi,j denote the jth element of vi and similarly for

π∗i so that Wi,j = vi,j − π∗i,j for each j ∈ [JK]. Note that under A1, each Wi,: is independent

but not identically distributed.

Our objective is to find a γ such that with high probability

P

(
1

n
‖X ′W‖∞,2 ≤ γ

)
.

Starting with the union bound, we have

P

(
1

n
‖X ′W‖∞,2 ≤ γ

)
= 1− P

(
1

n
max
j∈[p]
‖W ′X:,j‖2 > γ

)
≥ 1−

p∑
j=1

P

(
1

n
‖W ′X:,j‖2 > γ

)
.

(32)

To bound the probability in the final term, we apply McDiarmid’s inequality. We first establish

the component-wise deviation bound ci. Notice, taking f(W1, . . . ,Wn) = ‖W ′X:,j‖2/n, we

have that for any pair (Wi,:, W̃i,:) letting W̃ denote W with ith row replaced with W̃i,:,

|‖W ′X:,j‖2 − ‖W̃ ′X:,j‖2| ≤ ‖(W − W̃ )′X:,j‖2

by the reverse triangle inequality. Then, because Wk,: = W̃k,: for all k 6= i,

‖(W − W̃ )′X:,j‖2 =

√√√√x2
i,j

JK∑
l=1

(
π∗i,l − vi,l − π∗i,l + ṽi,l

)2
=

√√√√x2
i,j

JK∑
l=1

(ṽi,l − vi,l)2 ≤
√

2|xi,j|

since vi and ṽi differ by one in at most two coordinates by definition (since each Yi can have

only one component equal to one and all others equal to zero). Hence, for each i ∈ [n], we

have

|f(W1,:, . . . ,Wi,:, . . . ,Wn,:)− f(W1,:, . . . , W̃i,:, . . . ,Wn,:)| ≤
√

2|xi,j|
n

Therefore, by McDiarmid’s inequality,

P

(
1

n
‖W ′X:,j‖2 ≥

1

n
E ‖W ′X:,j‖2 + ε

)
≤ exp

(
−2n2ε2

2
∑n

i=1 x
2
i,j

)
≤ exp

(
−nε2

)
,

where the second inequality follows from
∑n

i=1 x
2
i,j ≤ n, i.e., assumption A2. It remains only
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to bound the expectation. Notice,

E‖W ′X:,j‖2 = E

√√√√ JK∑
l=1

{
n∑
i=1

xi,j
(
π∗i,l − vi,l

)}2

≤

√√√√√ JK∑
l=1

E

{ n∑
i=1

xi,j
(
π∗i,l − vi,l

)}2


by Jensen’s inequality. Furthermore, letting V denote the variance, each term under the

rightmost square-root can be bounded since

E

{ n∑
i=1

xi,j
(
π∗i,l − vi,l

)}2
 = V

{
n∑
i=1

xi,j
(
π∗i,l − vi,l

)}
+

[
E

{
n∑
i=1

xi,j (π∗il − vi,l)

}]2

= V

{
n∑
i=1

xi,j
(
π∗i,l − vi,l

)}
=

n∑
i=1

x2
i,jV(vi,l) ≤

1

4

n∑
i=1

x2
i,j ≤

n

4

since n−1E(vi,l) = π∗i,l, V(vi,l) = π∗il(1 − π∗il) ≤ 1/4 and
∑n

i=1 x
2
i,j ≤ n by assumption A2.

Therefore, we have that n−1E ‖W ′X:,j‖2 ≤ {JK/(4n)}1/2 and thus

P

(
1

n
‖W ′X:,j‖2 ≥

√
JK

4n
+ ε

)
≤ exp

(
−nε2

)
,

so that taking ε = {log(p/α)/n}1/2, it follows from (32) that

P

(
‖∇G̃(β†)‖∞,2 ≤

√
JK

4n
+

√
log(p/α)

n

)
≥ 1− p exp

(
−n log(p/α)

n

)
= 1− α. �

F.3 Proofs of Corollaries and Remarks

Proof of Remark 1 By definition, ΨJ,K(S) = supM∈Rp×JK ,M 6=0
‖MS,:D‖1,2
‖M‖F

. Recall that MS,: is

the submatrix of M containing only rows whose indices belong to the set S. By the Cauchy-

Schwarz inequality,

‖MS,:D‖1,2 =

p∑
j=1

1(j ∈ S)‖Mj,:D‖2 ≤

√√√√ p∑
j=1

1(j ∈ S)2

√√√√ p∑
j=1

‖Mj,:D‖2
2 =

√
|S|‖MD‖F .
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Thus,

sup
M∈Rp×JK ,M 6=0

‖MS,:D‖1,2

‖M‖F
≤ sup

M∈Rp×JK ,M 6=0

√
|S|‖MD‖F
‖M‖F

= sup
U∈Rp×JK ,‖U‖F=1

√
|S|‖UD‖F = sup

U∈Rp×JK ,‖U‖F=1

√
|S|tr(UDD′U ′).

Letting Uj,: ∈ RJK be the jth row of U ; and letting ϕ1(DD′) be the largest eigenvalue of DD′,

we have

ΨJ,K(S) ≤ sup
‖U‖F=1

√√√√|S| p∑
j=1

U ′j,:(DD
′)Uj,: ≤ sup

‖U‖F=1

√√√√|S|ϕ1(DD′)

p∑
j=1

U ′j,:Uj,: =
√
|S|ϕ1(DD′).

The result follows from the fact that ϕ1(DD′) = JK for all J and K. �

Proof of Corollary 1. As before, let ∆̂ = β̂−β†. We know that by definition of the disjoint

sets SI , SL, and SM ,

‖β̂ − β†‖1,2 = ‖∆̂‖1,2 = ‖∆̂SI ,:‖1,2 + ‖∆̂SL∪SM ,:‖1,2. (33)

Lemma 4 ensures that on the event γ > φ1‖∇G̃(β†)‖∞,2, ∆̂ ∈ C(S, φ), so γ > φ1‖∇G̃(β†)‖∞,2
equivalently implies (after some algebra)

‖∆̂SI ,:‖1,2 ≤
(φ1 + 1)‖∆̂SL∪SM ,:‖1,2 + φ1φ2(‖∆̂SL,:D‖1,2 − ‖∆̂SI∪SM ,:D‖1,2)

φ1 − 1

≤ (φ1 + 1)‖∆̂SL∪SM ,:‖1,2 + φ1φ2‖∆̂SL,:D‖1,2

φ1 − 1
. (34)

Thus, by (33) and (34), we have

‖β̂ − β†‖1,2 = ‖∆̂SI ,:‖1,2 + ‖∆̂SL∪SM ,:‖1,2

≤ (φ1 + 1)‖∆̂SL∪SM ,:‖1,2 + φ1φ2‖∆̂SL,:D‖1,2

φ1 − 1
+
φ1 − 1

φ1 − 1
‖∆̂SL∪SM ,:‖1,2

≤ 2φ1‖∆̂SL∪SM ,:‖1,2 + φ1φ2‖∆̂SL,:D‖1,2

φ1 − 1

≤
2φ1

√
|SL|+ |SM |‖∆̂‖F + φ1φ2ΨJ,K(SL)‖∆̂‖F

φ1 − 1
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so that the previous inequality finally implies

‖β̂ − β†‖1,2 ≤

{
2φ1

√
|SL|+ |SM |+ φ1φ2ΨJ,K(SL)

φ1 − 1

}
‖∆̂‖F . (35)

Since γ > φ1‖∇G̃(β†)‖∞,2 implies both (35) and ‖∆̂‖F ≤ Φn, the probability of

‖β̂ − β†‖1,2 ≤

{
2φ1

√
|SL|+ |SM |+ φ1φ2ΨJ,K(SL)

φ1 − 1

}
Φn

is greater than or equal to the probability of γ > φ1‖∇G̃(β†)‖∞,2, which under the specifica-

tion in Theorem 1, occurs with probability at least 1− α. �

Proof of Corollary 2. The proof of Corollary 2 follows an identical series of arguments as the

Proof of Theorem 1. We simply redefine β ∈ Rp×Ǩ and Ψ{Kj}Gj=1
according to the appropriate

D matrix. This modifies Condition 1, which depends on the Ψ{Kj}Gj=1
, n, p, φ1, φ2, SL and

SM ; modifies C(S, φ); and modifies the restricted eigenvalue, which is based on the pǨ × pǨ
Hessian of G̃ with respect to the vectorization of its matrix-valued argument. Thus, all that

is required is to determine the value of γ such that γ > φ1‖∇G(β†)‖∞,2 for (scaled) negative

log-likelihood G̃ : Rp×Ǩ → R. It is easy to see that modifying Lemma 6 would require only

replacing
∑JK

l=1 with
∑Ǩ

l=1. Thus, by an identical set of arguments as those in the proof of

Lemma 6, with W ∈ Rn×Ǩ , we would have that E‖W ′X:,j‖2/n ≤ {Ǩ/(4n)}1/2, which implies

P

‖∇G̃(β†)‖∞,2 ≤

√
Ǩ

4n
+

√
log(p/α)

n

 ≥ 1− α.

Hence, applying Lemma 4 and 5 would lead to the stated conclusion. �

G Additional details

G.1 Need for constraint matrix D

If instead of penalizing ‖D′βm,:‖2, one penalized ‖D′1βm,:‖2 or ‖D′2βm,:‖2 (where D1 and D2

correspond to different minimal sets of odds-ratios), the solution path (i.e., set of candidate

models) would depend on which sets of odds ratios are encoded in the constraint matrices D1

and D2. This may be problematic because at many points along the solution path D′1βm,: 6= 0,

but the penalty will encourage D′1βm,: to be small in Euclidean norm. This may or may not

correspond to D′2βm,: being small. For this reason, selecting one particular minimal set to

construct D1 may favor estimates with certain log odds ratios being small (but non-zero), but
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does not enforce (directly, at least) shrinkage of others. The use of D avoids this problem

entirely: all log odds-ratios are shrunken to an equal degree.

Regarding the theory, the results would be effectively unchanged if we used some D instead

of D. The sets SI , SL, SM (and their cardinalities) would be no different: only C(S, φ) would

have D replaced with D. In addition, we would redefine ΨJ,K with D replacing D in the

numerator. However, the bound in Remark 1 would not be improved by replacing D with

D. Examining the proof of Remark 1, it can be seen that the bound depends on the largest

eigenvalue of DD′ (or DD′). It can be verified that in both cases, this is equal to JK.2

G.2 Explicit form of β†

Consider that for any β ∈ Fπ, the matrix βa = β − a1′JK also belongs to Fπ for any a ∈ Rp.

Hence, given any β ∈ Fπ (i.e., any β which leads to the “true” probabilities), our definition

of β† can be expressed

β† = β − ã1′JK , where ã = arg min
a∈Rp

‖β − a1′JK‖1,2.

Fortunately, we can find an explicit form for ã. Notice

ã = arg min
a∈Rp

‖β − a1′JK‖1,2 = arg min
a∈Rp

p∑
j=1

‖βj,: − aj1JK‖2

so that the jth element of ã is given by

ãj = arg min
aj∈R

‖βj,: − aj1JK‖2 = arg min
aj∈R

‖βj,: − aj1JK‖2
2

from which we can easily see that ãj = (JK)−1
∑JK

m=1 βj,m. This reveals that given any β ∈ Fπ,

β† = β− (β1JK/JK)1′JK , i.e., β† is simply the version of β with row-wise average zero, which

is uniquely defined for a particular Fπ (and easily computed given any β ∈ Fπ).

G.3 More than one replicate per subject

At the suggestion of a referee, we explored the effects of additional replicates on the theoretical

results from Section 3. Here, we prove that additional replicates (with the number of unique

2The largest eigenvalues of DD′ and DD′ match, but the second through (J−1)(K−1)th largest eigenvalues
do not. For DD′ in the bivariate response case, these eigenvalues are equal to the largest: this is not true of
DD′.
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subjects in the dataset fixed) can improve the error bound. Specifically, we show the restricted

eigenvalue condition is always more plausible (in a sense to be described momentarily) with

additional replicates than it is for a dataset with the same number of distinct subjects3, but

each having a single replicate.

Lemma 7. Let κ(S, φ) be the restricted eigenvalue for a dataset with ni = 1 for all i ∈ [n].

Let κ̈(S, φ) be the restricted eigenvalue for the same dataset with the same n subjects and at

least one subject having more than one replicate, i.e., ni ≥ 2 for at least one i ∈ [n]. Then

κ̈(S, φ) ≥ κ(S, φ) almost surely.

Proof of Lemma 7. Recall that the restricted eigenvalue is defined as

κ(S, φ) = inf
∆∈C(S,φ)

vec(∆)′∇2G̃(β†)vec(∆)

‖∆‖2
F

,

where

C(S, φ) =
{

∆ ∈ Rp×JK : ∆ 6= 0, (φ1 + 1)‖∆SL∪SM ,:‖1,2 + φ1φ2‖∆SL,:D‖1,2 ≥
(φ1 − 1)‖∆SI ,:‖1,2 + φ1φ2‖∆SI∪SM ,:D‖1,2} .

Note first that for a dataset with ni = 1 for all i ∈ [n]

∇2G̃(β†) = n−1

n∑
i=1

{P ∗β†(xi)⊗ xix
′
i}

where letting π̃∗i,f(j,k) = π∗j,k(xi),

P ∗
β†(xi) =


π̃∗i,f(1,1)(1− π̃∗i,f(1,1)) −π̃∗i,f(1,1)π̃

∗
i,f(2,1) . . . . . . −π̃∗i,f(1,1)π̃

∗
i,f(J,K)

−π̃∗i,f(2,1)π̃
∗
i,f(1,1) π̃∗i,f(2,1)(1− π̃∗i,f(2,1)) −π̃∗i,f(2,1)π̃

∗
i,f(3,1) . . . −π̃∗i,f(2,1)π̃

∗
i,f(J,K)

... . . .
. . . . . .

...
... . . .

...
. . .

...

−π̃∗i,f(J,K)π̃
∗
i,f(1,1) −π̃∗i,f(J,K)π̃

∗
i,f(2,1) . . . . . . π̃∗i,f(J,K)(1− π̃∗i,f(J,K))

 ∈ RJK×JK.

If we observe nj replicates for the jth subject, we could express the Hessian for the (scaled)

3By “distinct subjects”, we mean subjects who have distinct measured predictors.
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negative log-likelihood, denoted ¨̃G, as

∇2 ¨̃G(β†) = n−1

n∑
i=1

[
ni∑
j=1

{P ∗β†(xi)⊗ xix
′
i}

]

= n−1

n∑
i=1

{P ∗β†(xi)⊗ xix
′
i}︸ ︷︷ ︸

∇2G̃(β†)

+n−1

n∑
i=1

(ni − 1){P ∗β†(xi)⊗ xix
′
i}︸ ︷︷ ︸

Q

where G̃ is the (scaled) negative log-likelihood for the dataset with ni = 1 for all i ∈ [n]. Of

course, Q is symmetric and non-negative definite so that that

κ̈(S, φ) = inf
u∈C(S,φ)

vec(u)′∇2 ¨̃G(β†)vec(u)

‖u‖2
F

= inf
u∈C(S,φ)

vec(u)′{∇2G̃(β†) +Q}vec(u)

‖u‖2
F

= inf
u∈C(S,φ)

{
vec(u)′∇2G̃(β†)vec(u)

‖u‖2
F

+
vec(u)′Qvec(u)

‖u‖2
F

}

≥ inf
u∈C(S,φ)

vec(u)′∇2G̃(β†)vec(u)

‖u‖2
F

+ inf
w∈C(S,φ)

vec(w)′Qvec(w)

‖w‖2
F

and since ν ′Qν ≥ 0 for all unit vectors ν, the previous inequality implies

κ̈(S, φ) ≥ inf
u∈C(S,φ)

vec(u)′∇2G̃(β†)vec(u)

‖u‖2
F

= κ(S, φ)

from which the conclusion follows. �
However, we caution against this result being interpreted as “having few subjects with

many replicates is better than more subjects with fewer replicates”. In the ni > 1 case, X

would consist of duplicated rows. In general, duplicated rows lead to a lower rank ∇2G̃(β†)

(relative to a version of X of the same dimension with entirely distinct rows), which in turn

leads to a smaller restricted eigenvalue and thus, worse error bound.

Hence, if one dataset has X with n rows based on n1 distinct subjects and another dataset

has X of the same dimension based on n2 (n2 > n1) distinct subjects, we would expect that

the restricted eigenvalue condition would be more plausible for the latter dataset, in general.

That is to say, there is a tradeoff between the benefit of replicates and the number of distinct

subjects in a dataset. More replicates are beneficial (as Lemma 7 reveals), but not at the

expense of more distinct subjects in the dataset.
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G.4 Additional computational details for competitors

Here, we very briefly discuss how we compute OG-Mult and LG-Mult. As discussed in the main

manuscript, for both we use an accelerated proximal gradient descent algorithm. In each step

of both algorithms, we must solve the respective proximal operators for the two penalties. For

the overlapping group penalty, we use the algorithm proposed by Yuan et al. (2013). In brief,

this is an iterative procedure which solves the dual of the proximal operator via accelerated

gradient descent. For the latent-group lasso penalty, we use a blockwise coordinate descent

algorithm to solve the proximal operator (e.g., Algorithm 2 of Yan and Bien (2017)).

G.5 Candidate tuning parameters

In this section, we discuss the construction of the set of candidate tuning parameters for

LO-Mult. For the remainder of this discussion, let β̂λ,γ denote the minimizer of (6) with

tuning parameters (λ, γ) and recall that ‖A‖∞,2 = maxj ‖Aj,:‖2 for a matrix A.

First, we pre-specify a set of candidate λ: we found that λ ∈ [10−4, 10−1] covered all

interesting models (i.e., those with smallest cross-validation error) across all the settings we

considered. As a default, we suggest λ ∈ {10x : x ∈ {−4,−3.75,−3.50,−3.25, . . . ,−1}}.
Then, to determine a set of candidate γ, we use the fact that if β̂0,γ = (β̃0, 0JK×p−1)′ (where

β̃0 ∈ RJK is the unpenalized maximum likelihood estimator from the intercept only model) for

a particular γ, then β̂λ,γ = (β̃0, 0JK×p−1)′ for that same γ for any λ > 0. To simplify notation,

let β̂0,∞ = (β̃0, 0JK×p−1)′. Based on the first-order optimality conditions for β̂λ,γ, it can be

checked that if γ ≥ ‖∇G̃(β̂0,∞)‖∞,2 then β̂λ,γ = (β̃0, 0JK×p−1)′ for all λ. Thus, we first compute

γmax = ‖∇G̃(β̂0,∞)‖∞,2, and then consider candidate set γ ∈ [δγmax, γmax] (equally spaced on

the log-base-2 scale) where δ < 1. In our simulation studies, we found δ = 0.05 worked well.

In practice, we suggest a user try a larger value of δ with fewer candidate γ, then based on

the cross-validation errors, refine δ and rerun with more candidate γ values.

H Semi-supervised categorical response regression

In practice, when there are multiple categorical responses variables, it is often the case that one

or more are costly or difficult to observe. To address these situations, we extend our method

to settings where some response variables are missing or unobserved. As before, we focus on

the bivariate categorical response regression model, but our developments can be generalized

to three or more categorical response variables as will be discussed in a subsequent section.

Throughout this section, let y(1)i ∈ RJ and y(2)i ∈ RK denote the observed response

category counts for ith subject’s first and second response variables, respectively (treating

all responses as completely observed). As before, we assume that ni = 1 for each i ∈ [n]

for simplicity. Let (L1,U1) and (L2,U2) be pairs of partitions of [n] where i ∈ Lk if y(k)i is

observed and i ∈ Uk if y(k)i is unobserved for (i, k) ∈ [n] × {1, 2}. Then, the observed data

31



negative log-likelihood (divided by n) is given by

GU ,L(β) = − 1

n

[ ∑
i∈L1∩L2

log

{∑
j,k

exp
(
x′iβ:,j,k

)
y(1)i,jy(2)i,k∑

s,t exp
(
x′iβ:,s,t

) }
+
∑

i∈L1∩U2

log

{∑
j,k

exp
(
x′iβ:,j,k

)
y(1)i,j∑

s,t exp
(
x′iβ:,s,t

) }

+
∑

i∈U1∩L2

log

{∑
j,k

exp
(
x′β:,j,k

)
y(2)i,k∑

s,t exp
(
x′β:,s,t

) }] .
The observed data likelihood consists of the joint probability mass function for subjects

with both responses observed, and the marginal probability mass function for those with only

one of the two responses observed.

To fit the multivariate multinomial logistic regression model with partially unobserved

responses, we propose to minimize a penalized version of GU ,L using the penalties motivated

in Section 2

arg min
β∈Rp×JK

{
GU ,L(β) + λ

p∑
m=2

‖D′βm,:‖2 + γ

p∑
m=2

‖βm,:‖2

}
. (36)

Fortunately, we need not resort to an expectation-maximization algorithm to compute

(36). In fact, we can solve this (possibly non-convex) optimization problem directly using a

modified version of the monotone accelerated proximal gradient descent proposed in Li and Lin

(2015). Specifically, we will need to compute the gradient of G̃U ,L, the version of GU ,L taking

a matrix-valued input. The gradient of G̃U ,L can be expressed ∇G̃U ,L(β(t)) = n−1X ′WL,U(β(t))

where WL,U(β(t)) has entries

[WL,U(β(t))]i,f(j,k) =


π

(t)
i,j,k − y(1)i,jy(2)i,k : i ∈ L1 ∩ L2

π
(t)
i,j,k(1− y(1)i,j) + (π

(t)
i,j,k − π

(t)
(2)i,k|j)y(1)i,j : i ∈ L1 ∩ U2

π
(t)
i,j,k(1− y(2)i,k) + (π

(t)
i,j,k − π

(t)
(1)i,j|k)y(2)i,k : i ∈ L2 ∩ U1,

where

π
(t)
i,j,k =

exp(x′iβ
(t)
:,j,k)∑J

s=1

∑K
t=1 exp(x′iβ

(t)
:,s,t)

, π
(t)
(1)i,j|k =

exp(x′iβ
(t)
:,j,k)∑J

s=1 exp(x′iβ
(t)
:,s,k)

, π
(t)
(2)i,k|j =

exp(x′iβ
(t)
:,j,k)∑K

t=1 exp(x′iβ
(t)
:,j,t)

,

for (i, j, k) ∈ [n] × [J ] × [K]. Computing the gradient of G̃U ,L is only slightly more com-

putationally intensive than computing the gradient of G̃. In addition to computing joint

probabilities, we see that computing the gradient involves computing both marginal and con-

ditional probabilities. For example, π
(t)
(1)i,j|k denotes the estimated conditional probability

P (Y1 = j | x, Y2 = k) at β(t). To apply Algorithm 1 of Li and Lin (2015), we need only use

that their updating equations (11) and (12) are instances of our (11), for which we can apply

Theorem 2.
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I Additional figures and tables referenced in Section 7

In this section, we provide a figure and table referenced in the main document, but omitted

for the sake of space. In Table 2, we provide counts for both cancer types and 5-year survival

status of the 420 subjects included in our data analysis in Section 8. In Figure 15, we present

Kaplan-Meier survival curves for the three cancer types, and for all three combined (in purple).

5-year status KICH KIRC KIRP Total
Alive 37 152 40 229

Deceased 8 148 35 191
Total 45 300 75 420

Table 2: Counts for the two multinomial response variables in the pan-kidney cancer data we
analyze in Section 7.
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Figure 15: Kaplan-Meier survival curves for the TCGA pan-kidney cancer cohort with all
three types combined (purple) and the three distinct cancer subtypes.
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