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A Proofs from Section 4

For ease of display, we define Ml = M(Al) and Dl = D(al) for each l ∈ [L]. Recall that

∥·∥2 denotes the Euclidean norm of a vector. Throughout, we use the notation vAl
∈ Ral to

denote the subvector of v with components indexed by the elements of Al.

Proof of Lemma 1. The result of Lemma 1 can be established by applying a similar series

of arguments as the proof of Lemma 1 from the Supplementary Materials of Molstad and

Rothman (2023). Recall, we are concerned with the solution to

arg min
ν∈RK

{
1

2
∥ν − η∥22+γ̃∥ν∥2+λ̃

L∑
l=1

wl∥Mlν∥2

}
(12)

where Ml is as defined after (9) in the main text. Note that Ml is symmetric so that

M⊤
l =Ml. We will first show that with ν̂0,λ̃, the solution to (12) with γ̃ = 0, we can obtain

the solution to (12) through the equality

ν̂γ̃,λ̃ = max

(
1− γ̃

∥ν̂0,λ̃∥2
, 0

)
ν̂0,λ̃.
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First, notice that the zero subgradient equation for (12) can be expressed

0 = ν̂γ̃,λ̃ − η + γ̃v + λ̃

L∑
l=1

Mlϕ
(l)

where v = ν̂γ̃,λ̃/∥ν̂γ̃,λ̃∥2 if ν̂γ̃,λ̃ ̸= 0 and ∥v∥2≤ 1 otherwise; and each ϕ(l) = Mlν̂γ̃,λ̃/∥Mlν̂γ̃,λ̃∥2
if Mlν̂γ̃,λ̃ ̸= 0 and otherwise, ∥ϕ(l)∥2≤ 1 with ϕ

(l)
k = 0 and ϕ(l) ∈ RK for all k ̸∈ Al otherwise.

Before we proceed, we make two notes about the ϕ(l). First, note that here, the superscript

does not represent an iteration counter (as in the main manuscript), but simply an index

(i.e., we have L of the ϕ(l) ∈ RK). Second, note that whether Mlν̂γ̃,λ̃ = 0 or not, ϕ
(l)
k = 0 for

all k ̸∈ Al, for each l ∈ [L].

To proceed, note that the zero subgradient equation for (12) with γ̃ = 0 is

0 = ν̂0,λ̃ − η + λ̃
L∑
l=1

Mlϕ̃
(l)

where each ϕ̃(l) =Mlν̂0,λ̃/ ∥Mlν̂0,λ̃∥2 if Mlν̂0,λ̃ ̸= 0 and otherwise, ∥ϕ̃(l)∥2≤ 1 with ϕ̃
(l)
k = 0 for

k ̸∈ Al. We will show that these first order conditions imply those for (12) as long as ν̂γ̃,λ̃ is

as defined in Lemma 1.

• Suppose ∥ν̂0,λ̃∥2> γ̃. We then will show that ν̂γ̃,λ̃ = (1 − γ̃/∥ν̂0,λ̃∥2)ν̂0,λ̃ satisfies the

first order conditions for (12). By definition of ν̂0,λ̃,

0 = ν̂0,λ̃ − η + λ̃
L∑
l=1

Mlϕ̃
(l)

=⇒ 0 = ν̂0,λ̃ − η + λ̃
L∑
l=1

Mlϕ̃
(l) + (1− γ̃/∥ν̂0,λ̃∥2)ν̂0,λ̃ − (1− γ̃/∥ν̂0,λ̃∥2)ν̂0,λ̃

=⇒ 0 = −η + γ̃
ν̂0,λ̃

∥ν̂0,λ̃∥2
+ λ̃

L∑
l=1

Mlϕ̃
(l) + (1− γ̃/∥ν̂0,λ̃∥2)ν̂0,λ̃︸ ︷︷ ︸

ν̂γ̃,λ̃

=⇒ 0 = ν̂γ̃,λ̃ − η + γ̃
ν̂γ̃,λ̃

∥ν̂γ̃,λ̃∥2
+ λ̃

L∑
l=1

Mlϕ̃
(l),

where
ν̂γ̃,λ̃

∥ν̂γ̃,λ̃∥2
=

ν̂0,λ̃
∥ν̂0λ̃∥2

because ν̂γ̃,λ̃ ∝ ν̂0,λ̃ when ν̂γ̃,λ̃ = (1 − γ̃/∥ν̂0,λ̃∥2)ν̂0,λ̃. The final

equality above is exactly the first order conditions for (12) as long as ϕ̃(l) is a subgradient
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of ∥Mlν̂γ̃,λ̃∥2 for each l ∈ [L], i.e., ϕ(l) = ϕ̃(l). However, this is immediate: if Mlν̂0,λ̃ ̸=
0, this implies Mlν̂γ̃,λ̃ = (1 − γ̃/∥ν̂0,λ̃∥2)(Mlν̂0,λ̃) ̸= 0, so ϕ(l) = Mlν̂γ̃,λ̃/∥Mlν̂γ̃,λ̃∥2=
Mlν̂0,λ̃/∥Mlν̂0,λ̃∥2= ϕ̃(l); whereas if Mlν̂0,λ̃ = 0, then by the same logic Mlν̂γ̃,λ̃ = 0, so

we may again take ϕ(l) = ϕ̃(l) for all l ∈ [L].

• Suppose 0 < ∥ν̂0,λ̃∥2≤ γ̃. We will now show that this implies ν̂γ̃,λ̃ = 0. Recall that the

first order conditions for (12) when ν̂γ̃,λ̃ = 0 are

0 = −η + γ̃v + λ̃
L∑
l=1

Mlϕ
(l)

for some ∥v∥2≤ 1 and for some ∥ϕ(l)∥2≤ 1 with ϕ
(l)
k = 0 for k ̸∈ Al for each l ∈ [L]. Let

z1 ≥ 0 be a scalar such that 1 = γ̃
∥ν̂0,λ̃∥2

− z1. By definition, there exists subgradients

ϕ̃(l) such that

0 = ν̂0,λ̃ − η + λ̃
L∑
l=1

Mlϕ̃
(l)

=⇒ 0 = ν̂0,λ̃

(
γ̃

∥ν̂0,λ̃∥2
− z1

)
− η + λ̃

L∑
l=1

Mlϕ̃
(l)

=⇒ 0 = γ̃ν̂0,λ̃

(
1

∥ν̂0,λ̃∥2
− z1
γ̃

)
− η + λ̃

L∑
l=1

Mlϕ̃
(l)

so that we need only argue that

∥ν̂0,λ̃∥2

(
1

∥ν̂0,λ̃∥2
− z1
γ̃

)
≤ 1

in which case we could take v = ν̂0,λ̃

(
1

∥ν̂0,λ̃∥2
− z1

γ̃

)
and ϕ̃(l) = ϕ(l). Notice

∥ν̂0,λ̃∥2

(
1

∥ν̂0,λ̃∥2
− z1
γ̃

)
=

(
1−

∥ν̂0,λ̃∥2(γ̃/∥ν̂0,λ̃∥2−1)

γ̃

)
=

∥ν̂0,λ̃∥2
γ̃

,

which is no greater than one by assumption. Hence, for v = ν̂0,λ̃

(
1

∥ν̂0,λ̃∥2
− z1

γ̃

)
, we
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have ∥v∥2≤ 1 so that

=⇒ 0 = γ̃v − η + λ̃
L∑
l=1

Mlϕ̃
(l).

Finally, we need to argue that ∥ϕ̃(l)∥2≤ 1, in which case we could take ϕ̃(l) = ϕ(l) for

each l ∈ [L]. However, ∥ϕ̃(l)∥2≤ 1 regardless of whether Mlν̂0,λ̃ = 0 or not, so we can

take ϕ(l) = ϕ̃(l) for each l ∈ [L].

• Suppose ∥ν̂0,λ̃∥2= 0. In this case, we have 0 = −η + λ̃
∑L

l=1Mlϕ̃
(l) where ∥ϕ̃(l)∥≤ 1 for

each l ∈ [L]. Thus, taking v = 0, we also have 0 = −η + γ̃v + λ̃
∑L

l=1Mlϕ̃
(l). Since

∥v∥2≤ 1 and each ∥ϕ̃(l)∥2≤ 1, these are exactly the first order conditions for (12) with

ν̂γ̃,λ̃ = 0.

Putting these three cases together completes the proof. ■

Proof of Theorem 1. Recall, based on the result of Lemma 1, we are concerned with

computing

arg min
ν∈RK

{
1

2
∥ν − η∥22+λ̃

L∑
l=1

wl∥DlνAl
∥2

}
. (13)

First, notice that because the Al are nonoverlapping (by assumption) (13) can be solved

separately over each set Al, so it suffices to focus on

minimize
νl∈Ral

{
1

2
∥νl − ηAl

∥22+λ̃wl∥Dlνl∥2
}
. (14)

Let ν̄l,λ̃ denote the argument minimizing (14). To solve 14, we consider its dual problem

minimize
ζ∈Ral

1

2
∥ηAl

−Dlζ∥22 subject to ∥ζ∥2≤ wlλ̃, (15)

which can be derived using a similar series of arguments as those used to derive (13) in

Tibshirani and Taylor (2011). With a minimizer of (15), say ζ̂, the minimizer of (14) is given

by ηAl
−Dlζ̂. Thus, we focus on (15). We consider two cases: (i) ∥(D⊤

l Dl)
−D⊤

l ηAl
∥2≤ wlλ̃

and (ii) ∥(D⊤
l Dl)

−D⊤
l ηAl

∥2> wlλ̃ where (D⊤
l Dl)

− denotes the Moore-Penrose pseudoinverse

of D⊤
l Dl = Dl. Note that because (D

⊤
l Dl)

−D⊤
l = Dl, we could rewrite (i) as ∥DlηAl

∥2≤ wlλ̃,

and similarly for (ii).

If (i) holds, one solution to (15) is given by ζ̂ = (D⊤
l Dl)

−D⊤
l ηAl

= DlηAl
since the

constraint in (15) is then satisfied by a global minimizer. Note that because Dl is rank
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deficient, the dual problem can have many solutions. When (i) holds, the set of solutions is

given by {DlηAl
+ c: c ∈ Ral , ∥DlηAl

+ c∥2≤ wlλ̃, Dlc = 0}. For any ζ̃, an element of the set

of solutions, we thus have

ν̄l,λ̃ = ηAl
−Dlζ̃ = ηAl

−DlDlηAl
= ηAl

−DlηAl
= 1al(1

⊤
al
ηAl

)/al,

which is identical for all solutions ζ̃ . Of course, the primal problem is strictly convex, and has

a unique solution. The primal problem is also strictly feasible, so strong duality holds. Thus,

we conclude ν̄l,λ̃ = 1al(1
⊤
al
ηAl

)/al is the minimizer of the primal problem when ∥DlηAl
∥2≤ wlλ̃.

Now let us consider (ii). Because ∥(D⊤
l Dl)

−D⊤
l ηAl

∥2> wlλ̃, we know that the argu-

ment minimizing (15) is not an unconstrained solution. This follows from the fact that

(D⊤
l Dl)

−D⊤
l ηAl

is the minimizer of g⋆ with the minimum Euclidean norm among all mini-

mizers. Hence, in this case, the dual problem can be expressed

minimize
ζ∈Ral

∥ηAl
−Dlζ∥22 subject to ∥ζ∥22= w2

l λ̃
2. (16)

Because there is a one-to-one correspondence between ridge regression in its Lagrangian form

and its constrained form (as above), we know the argument minimizing (16) corresponds to

ζ̄(τ) = arg min
ζ∈Ral

∥ηAl
−Dlζ∥22+τ∥ζ∥22

for a choice of τ > 0 such that ∥ζ̄(τ)∥22= w2
l λ̃

2. Due to the fact that ζ̄(τ) = (D⊤
l Dl +

τIal)
−1D⊤

l ηAl
, we need only determine τ such that

η⊤Al
Dl(D

⊤
l Dl + τIal)

−1(D⊤
l Dl + τIal)

−1D⊤
l ηAl

= ∥(D⊤
l Dl + τIal)

−1D⊤
l ηAl

∥22= w2
l λ̃

2.

Let UΨU⊤ = Dl be the eigendecomposition of D⊤
l Dl = Dl. By construction, Ψ is a diagonal

matrix with nonnegative diagonal entries denoted ψ1, . . . , ψal . Then, we must find a τ such

that

η⊤Al
Dl(D

⊤
l Dl + τIal)

−1(D⊤
l Dl + τIal)

−1D⊤
l ηAl

= w2
l λ̃

2

or restated, letting v = U⊤ηAl
∈ Ral ,

η⊤Al
UΨ(Ψ + τI)−2ΨU⊤ηAl

= w2
l λ̃

2 ⇐⇒
al∑

k=1

v2kψ
2
k

(ψk + τ)2
= w2

l λ̃
2.
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Next, letting v−al = (v1, . . . , val−1)
⊤ and using that ψj = 1 for j ∈ {1, . . . , al−1} and ψal = 0,

al∑
k=1

v2kψ
2
k

(ψk + τ)2
= w2

l λ̃
2 ⇐⇒

al−1∑
k=1

v2k
(1 + τ)2

= w2
l λ̃

2 ⇐⇒ τ =
∥v−al∥2
wlλ̃

− 1.

It can be easily verified that Dl(D
⊤
l Dl + τ)−1D⊤

l = Dl/(τ + 1), so plugging this back into

our expression for ν̄l,λ̃, we have

ν̄l,λ̃ = ηAl
−Dl(D

⊤
l Dl + τ)−1D⊤

l ηAl

= ηAl
− ηAl

/(τ + 1) + 1al(1
⊤
al
ηAl

)/(τal + al)

= {1− (τ + 1)−1}ηAl
+ (τ + 1)−1(1⊤alηAl

/al)1al .

Finally, using that ∥v−al∥2= ∥DlηAl
∥2, which implies τ =

∥v−al
∥2

wlλ̃
− 1 =

∥DlηAl
∥2

wlλ̃
− 1, we

conclude

ν̄l,λ̃ =

(
1− wlλ̃

∥DlηAl
∥2

)
ηAl

+
wlλ̃

∥DlηAl
∥2
(1⊤alηAl

/al)1al ,

which completes the proof. ■

B Proofs and definitions from Section 5

B.1 Definition of C(S̃, ϕ)

First, we define the set C(S̃, ϕ) which our restricted eigenvalue condition, A2, depends on.

For completeness, let us remind the reader of the quantities needed for this definition. Recall

that S ⊂ [p] is the set of predictors which are relevant (i.e., β†
j,: ̸= 0 for j ∈ S) and Sc = [p]\S.

By definition of β†, the kth predictor is irrelevant if β†
k,: = 0. Similarly, for each Al, the set

Sl = {k ∈ [p] : β†
k,Al

̸= c1al for any c ∈ R} is the set of predictors which distinguish between

fine categories belonging to the lth coarse category. Consequently, Sc
l = [p] \ Sl, i.e., Sc

l is

the set of predictors which do not distinguish between the fine categories in coarse category

l in the sense that β†
k,Al

= c1⊤al for some c ∈ R, including c = 0.

With these quantities, we are ready to define the set C(S̃, ϕ) which will depend on con-

stants ϕ = (ϕ1, ϕ2) ∈ (1,∞) × (0,∞) =: T and the collection of sets S̃ := {S,S1, . . . ,SL}.

6



Specifically, letting ∆S,: be the submatrix of ∆ consisting of the rows indexed by S, define

C(S̃, ϕ) =

{
∆ ∈ Rp×K : ϕ1ϕ2

L∑
l=1

∑
k∈Sl

∥D(al)∆k,Al
∥2+(ϕ1 + 1)∥∆S,:∥1,2 ≥

ϕ1ϕ2

L∑
l=1

∑
k∈Sc

l

∥D(al)∆k,Al
∥2+(ϕ1 − 1)∥∆Sc,:∥1,2

 .

B.2 Proof of Theorem 2

In order to prove the result from Section 5, we use essentially the same proof technique as in

Molstad and Rothman (2023). First, we provide the key lemmas, which we prove in a later

section. In this section, we define ∥A∥∞,2= maxj∈[a]∥Aj:∥2 and ∥A∥1,2=
∑a

j=1∥Aj:∥2 where

∥Aj:∥2 is the Euclidean norm of the jth row of a matrix A ∈ Ra×b.

Lemma 2. Suppose C1, A1, and A2 hold. Let ϵ > 0, c > 2, ϕ1 > 1, and ϕ2 > 0 be fixed

constants. Define ρ1 = c(ϕ1 + 1), ρ2 = cϕ1ϕ2, dn =
√
6maxi∈[n]∥xi∥2, and

γ =
ϕ1ϵκ(S̃, ϕ)

ρ1
√

|S|+ ρ2ΨA(S̃)
.

If γ ≥ ϕ1∥∇G(β†)∥∞,2, λ = ϕ2γ, and dnϵ is sufficiently close to zero such that ednϵ + dnϵ −
d2nϵ

2/c− 1 > 0, then ∥β̂ − β†∥F≤ ϵ.

Lemma 3. (Molstad and Rothman, 2023, Lemma 7) Under condition C1 and assumption

A1, for a given α ∈ (0, 1)

Pr

{
∥∇G(β†)∥∞,2≤

√
K

4n
+

√
log(p/α)

n

}
≥ 1− α.

A complete proof of Lemma 3 can be found in Molstad and Rothman (2023). Finally,

with these two lemmas in hand, we are able to prove the main result.

Proof of Theorem 2. Let

ϵ =
ρ1
√

|S|+ ρ2ΨA(S̃)
κ(S̃, ϕ)

(√
K

4n
+

√
log(p/α)

n

)
.
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Then, define

γ = ϕ1

(√
K

4n
+

√
log(p/α)

n

)
.

Taking c = 3 and assuming dns
∗γ → 0, it thus follows that for n sufficiently large, ednϵ +

dnϵ− d2nϵ
2/c− 1 > 0 (since dnϵ → 0 is implied by dns

∗γ → 0), in which case Lemma 2 and

Lemma 3 imply

Pr

{
∥β̂ − β†∥F≤

ρ1
√
|S|+ ρ2ΨA(S̃)
κ(S̃, ϕ)

(√
K

4n
+

√
log(p/α)

n

)}

≥ Pr

{
∥∇G(β†)∥∞,2≤

√
K

4n
+

√
log(p/α)

n

}
≥ 1− α. ■

Remark 1. A more precise version of Theorem 2 could be obtained by requiring that dnϵ is

sufficiently small such that ednϵ + dnϵ− d2nϵ
2/c− 1 > 0. For example, if we set c = 3, then as

long as

3dn

[
(ϕ1 + 1)

√
|S|+ ϕ1ϕ2ΨA(S̃)
κ(S̃, ϕ)

](√
K

4n
+

√
log(p/α)

n

)
∈ (0, 1.36),

it would follow that ∥β̂ − β†∥F≤ ϵ with probability at least 1− α.

B.3 Proofs of lemmas

In order to prove the main lemma, Lemma 2, we need the following.

Lemma 4. (Molstad and Rothman, 2023, Lemmas 3 and 4) With dn =
√
6maxi∈[n]∥xi∥2,

G(β† +∆)− G(β†) ≥ tr{∆⊤∇G(β†)}+ vec(∆)⊤∇2G(β†)vec(∆)

d2n∥∆∥2F
(e−dn∥∆∥F + dn∥∆∥F−1)

for any ∆ ∈ Rp×K.

Lemma 4 is a consequence of the 2-self concordance of the multinomial negative log-

likelihood (Bach, 2010; Tran-Dinh et al., 2015). Next, we need a lemma which establishes

that when γ is chosen appropriately, β̂ − β† belongs to C(S̃, ϕ).

Lemma 5. If λ = ϕ2γ and γ ≥ ϕ1∥∇G(β†)∥∞,2, then β̂ − β† ∈ C(S̃, ϕ).
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We are now ready to prove the main lemma, Lemma 2.

Proof of Lemma 2. Let Fλ,γ denote the objective function from (3) (with all rows of β

included in both penalties). Because Fλ,γ is convex and β̂ is its minimizer, to establish the

result it is sufficient to show that inf∆∈Bϵ,ϕ
{Fλ,γ(β

† +∆)−Fλ,γ(β
†)} > 0 where Bϵ,ϕ = {∆ ∈

Rp×K : ∥∆∥F= ϵ,∆ ∈ C(S̃, ϕ)}. For a proof of this fact, see Lemma 4 of Negahban et al.

(2012). First, define H(∆) = Fλ,γ(β
† +∆)−Fλ,γ(β

†) so that

H(∆) = G(β† +∆)− G(β†)︸ ︷︷ ︸
T1

+ γ∥β† +∆∥1,2−γ∥β†∥1,2︸ ︷︷ ︸
T2

+ λ

p∑
j=1

L∑
l=1

∥D(al)(βj,Al
+∆j,Al

)∥2−λ
p∑

j=1

L∑
l=1

∥D(al)βj,Al
∥2︸ ︷︷ ︸

T3

.

We will bound each term T1, T2, and T3. Starting with T2, since β
†
Sc,: = 0, we see that

∥β† +∆∥1,2−∥β†∥1,2 = ∥β†
S,: +∆S,:∥1,2+∥∆Sc,:∥2−∥β†

S,:∥1,2≥ ∥∆Sc,:∥1,2−∥∆S,:∥1,2

by the triangle inequality so that T2 ≥ γ∥∆Sc,:∥1,2−γ∥∆S,:∥1,2. Next, dealing with T3, since

D(al)βk,Ak
= 0al for k ∈ Sc

l , by a similar argument,

p∑
j=1

L∑
l=1

∥D(al)(βj,Al
+∆j,Al

)∥2−
p∑

j=1

L∑
L=1

∥D(al)βj,Al
∥2

=
L∑
l=1

∑
k∈Sl

∥D(al)(βk,Al
+∆k,Al

)∥2+
L∑
l=1

∑
k∈Sc

l

∥D(al)∆k,Al
∥2−

L∑
L=1

∑
k∈Sl

∥D(al)βk,Al
∥2

≥
L∑
l=1

∑
k∈Sc

l

∥D(al)∆k,Al
∥2−

L∑
l=1

∑
k∈Sl

∥D(al)∆k,Al
∥2

so that we have

T3 ≥ λ

L∑
l=1

∑
k∈Sc

l

∥D(al)∆k,Al
∥2−λ

L∑
l=1

∑
k∈Sl

∥D(al)∆k,Al
∥2.
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To bound T1, we apply Lemma 4 which implies

T1 ≥ tr{∆⊤∇G(β†)}+ vec(∆)⊤∇2G(β†)vec(∆)

d2n∥∆∥2F
(e−dn∥∆∥F + dn∥∆∥F−1).

Putting these three bounds together and using λ = ϕ2γ—along with the fact that tr{∆⊤∇G(β†)} ≥
−∥∆∥1,2∥∇G(β†)∥∞,2 by Hölder’s inequality—we have that

H(∆) ≥− ∥∆∥1,2∥∇G(β†)∥∞,2+
vec(∆)⊤∇2G(β†)vec(∆)

d2n∥∆∥2F
(e−dn∥∆∥F + dn∥∆∥F−1)

+ γ∥∆Sc,:∥1,2−γ∥∆S,:∥1,2+ϕ2γ
L∑
l=1

∑
k∈Sc

l

∥D(al)∆k,Al
∥2−ϕ2γ

L∑
l=1

∑
k∈Sl

∥D(al)∆k,Al
∥2.

Then, since we are assuming γ ≥ ϕ1∥∇G(β†)∥∞,2

H(∆) ≥ − ∥∆∥1,2
γ

ϕ1

+
vec(∆)⊤∇2G(β†)vec(∆)

d2n∥∆∥2F
(e−dn∥∆∥F + dn∥∆∥F−1)

+ γ∥∆Sc,:∥2−γ∥∆S,:∥2+ϕ2γ
L∑
l=1

∑
k∈Sc

l

∥D(al)∆k,Al
∥2−ϕ2γ

L∑
l=1

∑
k∈Sl

∥D(al)∆k,Al
∥2

≥ vec(∆)⊤∇2G(β†)vec(∆)

d2n∥∆∥2F
(e−dn∥∆∥F + dn∥∆∥F−1) + γ

(ϕ1 − 1)

ϕ1

∥∆Sc,:∥2 (17)

− γ
(ϕ1 + 1)

ϕ1

∥∆S,:∥2+ϕ2γ
L∑
l=1

∑
k∈Sc

l

∥D(al)∆k,Al
∥2−ϕ2γ

L∑
l=1

∑
k∈Sl

∥D(al)∆k,Al
∥2

so that applying A2, i.e., vec(∆)⊤∇2G(β†)vec(∆)

∥∆∥2F
≥ κ(S̃, ϕ) for all ∆ ∈ Bϵ,ϕ, we further have

H(∆) ≥ κ(S̃, ϕ)
d2n

(e−dn∥∆∥F + dn∥∆∥F−1) + γ
(ϕ1 − 1)

ϕ1

∥∆Sc,:∥2

− γ
(ϕ1 + 1)

ϕ1

∥∆S,:∥2+ϕ2γ
L∑
l=1

∑
k∈Sc

l

∥D(al)∆k,Al
∥2−ϕ2γ

L∑
l=1

∑
k∈Sl

∥D(al)∆k,Al
∥2

≥ κ(S̃, ϕ)
d2n

(e−dn∥∆∥F + dn∥∆∥F−1)− γ

(
(ϕ1 + 1)

ϕ1

∥∆S,:∥2−ϕ2

L∑
l=1

∑
k∈Sl

∥D(al)∆k,Al
∥2

)
.
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Using ∥∆S,:∥1,2≤
√

|S|∥∆∥F and ΨA(S̃)∥∆∥F≥
∑L

l=1

∑
k∈Sl

∥D(al)∆k,Al
∥2, it follows from

the above that with ∥∆∥F= ϵ,

H(∆) ≥ κ(S̃, ϕ)
d2n

(e−dnϵ + dnϵ− 1)− γϵ

{
(ϕ1 + 1)

ϕ1

√
|S|+ ϕ2ΨA(S̃)

}
.

Thus, by taking

γ =
ϕ1ϵκ(S̃, ϕ)

c(ϕ1 + 1)
√

|S|+ cϕ1ϕ2ΨA(S̃)
,

it follows that

H(∆) ≥ κ(S̃, ϕ)
d2n

(e−dnϵ + dnϵ− 1)− ϵ2κ(S̃, ϕ)
c

=
κ(S̃, ϕ)
d2n

(
e−dnϵ + dnϵ−

d2nϵ
2

c
− 1

)
which is positive—thus establishing the result—if(

e−dnϵ + dnϵ−
d2nϵ

2

c
− 1

)
> 0,

which will occur when dnϵ is sufficiently close to zero. ■.

Proof of Lemma 5. Since Fγ,λ is convex and β̂ is its minimizer, we know that H(∆̂) ≤ 0

where ∆̂ = β̂ − β†. Thus, by the inequality in (17),

0 ≥ H(∆̂) ≥ γ
(ϕ1 − 1)

ϕ1

∥∆̂Sc,:∥1,2−γ
(ϕ1 + 1)

ϕ1

∥∆̂S,:∥1,2

+ ϕ2γ
L∑
l=1

∑
k∈Sc

l

∥D(al)∆̂k,Al
∥2−ϕ2γ

L∑
l=1

∑
k∈Sl

∥D(al)∆̂k,Al
∥2

from which it follows that

γ
(ϕ1 + 1)

ϕ1

∥∆̂S,:∥1,2+ϕ2γ

L∑
l=1

∑
k∈Sl

∥D(al)∆̂k,Al
∥2

≥ γ
(ϕ1 − 1)

ϕ1

∥∆̂Sc,:∥1,2+ϕ2γ
L∑
l=1

∑
k∈Sc

l

∥D(al)∆̂k,Al
∥2,

11



or, restated,

(ϕ1 + 1)∥∆̂S,:∥1,2+ϕ1ϕ2

L∑
l=1

∑
k∈Sl

∥D(al)∆̂k,Al
∥2

≥ (ϕ1 − 1)∥∆̂Sc,:∥1,2+ϕ1ϕ2

L∑
l=1

∑
k∈Sc

l

∥D(al)∆̂k,Al
∥2. ■

C Algorithms

In this section, we present formal statements of the algorithms described in Section 4.

First, we present the accelerated proximal gradient descent algorithm for computing the

estimator in Algorithm 1. How to solve Step 4.1.2 is discussed in Sections 4.2 and 4.3. In the

case of overlapping coarse categories, we can solve Step 4.1.2 of Algorithm 1 using Algorithm

2. Note that we can actually solve the proximal operator with overlapping coarse categories

more efficiently than as described in Algorithm 2. Specifically, if any Al do not intersect

with any other Al′ (including Al which are singletons), then we can solve for νAl
from (8)

using exactly the expression from Theorem 1. overlap can be

Recovery p Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Exact

100 0.9933 0.8067 0.6156 0.4594 0.3439 0.5072
200 0.9961 0.8033 0.6144 0.4706 0.3506 0.5533
500 0.9928 0.8078 0.5994 0.4500 0.3994 0.5861
1000 0.9961 0.8089 0.6144 0.4561 0.4072 0.6289

Partial

100 0.9933 0.9728 0.9439 0.9306 0.9528 0.9683
200 0.9961 0.9683 0.9428 0.9339 0.9539 0.9694
500 0.9928 0.9733 0.9217 0.9106 0.9522 0.9628
1000 0.9961 0.9722 0.9411 0.9044 0.9350 0.9611

Table 1: The average proportion of important predictors where the true structure was esti-
mated exactly (“Exact”), and the average proportion of important predictors where the true
structure was coarser (or identical) to the estimated structure (“Partial”).
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Algorithm 1 Accelerated proximal gradient descent for computing (3)

Initialize β(0) = β(1) ∈ Rp×K , α(0) = α(1) = 1, τ (1) = τ0 > 0, and L0 = ∥X∥2F
√
K/n

X0. Set t = 1 and proceed to 1

X1. Set Γ = β(t) + {(α(t−1) − 1)/α(t)}(β(t) − β(t−1))

X2. Set η = Γ− τ (t)∇G(Γ)
X3. Set β̄1,: = η1,:
X4. For j ∈ {2, . . . , p} in parallel

XXX 4.1. If ∥ηj,:∥2≤ τ (t)γ

XXXXXXXX 4.1.1. Set β̄j,: = 0

XXX 4.1. Else

XXXXXXXX 4.1.2. Compute νj = arg minν∈RK{1
2
∥ηj,: − ν∥22+τ (t)λ

∑L
l=1wl∥D(al)νAl

∥2}
XXXXXXXX 4.1.3. Set β̄j,: = max(1− τ (t)γ/∥νj∥2, 0)νj
X 5. If G(β̄) ≤ G(Γ) + tr{∇G(Γ)⊤(β̄ − Γ)}+ ∥β̄ − Γ∥2F/2τ (t)

XXXX 5.1. Set β(t+1) = β̄, α(t+1) =
1+
√

1+4(α(t))2

2
, τ (t+1) = τ (t), t = t+ 1 and return to 1

X6. Else

XXXX 5.2. Replace τ (t) = max(τ (t)/2, 1/L0) and return to 2

X6. If relative change in objective function is less than ϵ for last three iterations, terminate

6. Else, return to 1

D Additional results from Section 6

D.1 Results with alternative performance metrics

In Figures 7 and 8, we display Kullback-Leibler divergences and classification errors, respec-

tively, for the simulation settings described in Section 6. In Figure 7, we see that all relative

performances essentially mirror those from Figures 2 of the main manuscript. We discuss

results presented in Figure 8 in the Section D.2.

D.2 Comparison to additional competitors

In this section, we compare the methods considered in the main manuscript to additional

competitors. Specifically, we compare to the multiclass sparse discriminant analysis method

(MSDA) proposed by Mai et al. (2019), to “vanilla” random forests (RF), and hierarchical

random forests (HRF) proposed by Kaymaz et al. (2021). Because these methods do not

estimate response category probabilities directly, we restrict our attention to a comparison

in terms of classification accuracy.
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Algorithm 2 Blockwise coordinate descent for solving (8) with overlapping Al

Initialize (ζ
(1)
:,1 , . . . , ζ

(1)
:,L ) such that ζ

(1)
:,l belongs to the feasible set for (9) for each l ∈ [L]

X 0. Set η̃ = η −
∑L

j=1M(Al)ζ
(1)
l , r = 1, and proceed to 1

X 1. For l ∈ {1, 2, . . . , L} in order

XXX 1.1. Update η̃ = η̃ +M(Al)ζ
(r)
l

XXX 1.2. Compute ζ
(r+1)
l according to (11)

XXX 1.3. Update η̃ = η̃ −M(Al)ζ
(r+1)
l

X 2. If not converged, set r = r + 1 and return to 2

X 2. Else, return the solution to (9), ν̂0,λ̃ = η −
∑L

l=1M(Al)ζ
(r+1)
l

In Figure 8, we present this comparison under the data generating models considered in

Section 6. We see that in general, the methods relying on the multinomial logistic regres-

sion model perform best, though MSDA can perform better than the L1-penalized multinomial

logistic regression estimator in certain scenarios. The two random forest variants always per-

form worse than the other competitors. When p is small, RF outperforms HRF, though when

few predictors distinguish between coarse categories and p = 1000, we see HRF significantly

outperform RF.

D.3 Support and effect resolution recovery

A fundamentally important aspect of our estimator is the degree to which it recovers both

the relevant set of predictors, as well as the resolution at which the relevant predictors

affect the response category probabilities. To assess this question, we provide results on

effect resolution recovery in Table 1, and variable selection accuracy in Table 2. In Table

1, we provide the average proportion of important predictors where the true structure was

estimated exactly (“exact”), and the average proportion of important predictors where the

true structure was coarser (or identical) to the estimated structure (“partial”). The latter

is interesting because even if we do not recover the blockwise (effect resolution) structure

exactly, we can often approximate it well without exact equality. For example, in one

simulation scenario, the row for a particular important predictor, denoted by k, was

β∗
k,: = 1.903 1.903 1.903 -3.168 -3.168 -3.168 1.248 1.248 1.248 0.018 0.018 0.018

β̂k,: = 0.802 0.802 0.802 -1.222 -1.171 -1.173 0.294 0.294 0.294 0.093 0.093 0.093

In the example above, we see that our estimate nearly recovers the blockwise structure,
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but for the fourth through sixth coefficients, fails to enforce exactly equality. In Table 1, this

would not count as an “exact” recovery, but it would count as a “partial” recovery since our

method estimates the effects to occur at a resolution finer than the truth. Notable about

this estimate—and many others we observed to be “partial” recoveries—is that coefficients

which do not have the exact blockwise equality of the truth have approximately the blockwise

structure. In the example above, in practice β̂k,: will have an effect nearly indistinguishable

from a version with coefficients four through six being exactly equal.

Note that if we failed to include a relevant predictor in the model, this would count as

neither “exact” nor “partial” recovery.

We also provide true positive (TPR) and true negative (TNR) variable selection rates,

as well as model size (defined as the total number of distinct coefficients estimated by each

method) in Table 2. We see that our method, mrMLR, and the group lasso penalized multino-

mial logistic regression estimator, Group, have nearly identical TPR and TNR. However, as

the number of predictors effecting response categories at a coarse resolution increases, (i.e.,

going from Model 1 to Model 6), we see that the model sizes begin to differ substantially.

In particular, by Model 6, where only 3 of the 18 relevant predictors affect the response

category probabilities at the finest resolution, our method estimates near half as many dis-

tinct coefficients as Group. This partially explains the improvement in efficiency our method

provides.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Group mrMLR Group mrMLR Group mrMLR Group mrMLR Group mrMLR Group mrMLR

T
P
R

100 1.000 1.000 1.000 0.999 1.000 1.000 0.999 0.999 0.997 0.998 0.995 0.997
200 1.000 1.000 0.998 0.998 0.997 0.999 0.996 0.998 0.991 0.997 0.987 0.994
500 1.000 1.000 0.999 0.999 0.994 0.996 0.990 0.993 0.987 0.994 0.972 0.987
1000 0.999 0.999 0.996 0.997 0.995 0.996 0.988 0.992 0.979 0.992 0.967 0.986

T
N
R

100 0.203 0.203 0.189 0.185 0.197 0.178 0.194 0.182 0.201 0.168 0.218 0.229
200 0.384 0.381 0.378 0.372 0.384 0.373 0.385 0.362 0.403 0.343 0.428 0.414
500 0.612 0.609 0.612 0.608 0.617 0.608 0.620 0.600 0.632 0.584 0.652 0.622
1000 0.740 0.738 0.739 0.737 0.739 0.728 0.747 0.738 0.755 0.716 0.778 0.750

M
o
d
el

si
ze 100 1000.2 997.0 1013.9 979.2 1005.7 926.8 1008.6 783.8 1001.5 741.5 984.7 509.1

200 1560.8 1563.4 1574.8 1527.4 1559.9 1409.0 1557.7 1215.6 1517.5 1171.1 1461.6 751.7
500 2460.2 2463.2 2457.7 2377.5 2427.8 2174.8 2409.8 1886.4 2344.0 1795.4 2219.9 1202.4
1000 3282.4 3289.6 3289.3 3188.3 3285.2 3035.6 3189.6 2481.3 3102.2 2330.4 2827.3 1554.6

Table 2: Average true positive rate, true negative rates, and total number of distinct coef-
ficients estimated by both Group and mrMLR under the data generating models described in
Section 6.
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D.4 Computing times

In Tables 3 and 4, we present averages of the time taken to compute the entire solution path

in the simulation study scenarios. Note that we compute the solution path over both pairs of

tuning parameters (γ, λ), of which we consider a grid of 100×10 (i.e., this is the time to com-

pute our estimator roughly 1000 times). Also note that we use extremely strict convergence

tolerance ϵ1 in the simulation studies and the real data analysis. Every simulation study

replicate required 2GB of memory or less and was performed on a single core on HiperGator

3.0 at the University of Florida (https://www.rc.ufl.edu/about/hipergator).

ϵ p Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

10−9

100 6.10 9.02 12.24 13.93 13.03 12.72
200 9.58 12.19 11.12 17.85 14.96 15.94
500 11.01 19.78 15.58 28.06 31.42 36.55
1000 18.06 34.32 32.13 49.62 67.77 80.96

10−7

100 2.68 4.22 5.54 6.34 5.81 5.44
200 4.61 5.80 5.35 8.39 6.93 7.27
500 5.76 10.12 7.82 14.00 15.09 17.42
1000 9.45 17.50 16.37 25.34 33.92 39.63

10−5

100 1.69 2.55 3.38 3.90 3.47 3.22
200 2.84 3.51 3.24 5.06 4.09 4.17
500 3.48 5.95 4.58 8.00 8.47 9.57
1000 5.51 10.27 9.93 14.62 17.04 20.14

Table 3: Average time (in minutes) to compute the entire solution path over 100 × 10
candidate tuning parameter pairs (γ, λ) in the nonoverlapping simulation study scenarios.
Note that these times represent computation on a single core with 2GB memory.

p Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

100 46.24 69.50 72.06 75.10 75.35 77.35
200 68.70 107.95 107.90 114.20 100.38 97.45
500 99.73 163.14 204.94 242.51 194.73 161.60
1000 175.41 289.16 292.32 385.86 422.03 316.73

Table 4: Average time (in minutes) to compute the entire solution path over 100 × 10
candidate tuning parameter pairs (γ, λ) in the simulation study scenarios described in Section
D.5 with ϵ = 10−9.

1We claim convergence when the objective function changes less than ϵ% for three consecutive iterations.
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We were able to run our analysis of the single-cell data from Hao et al. (2021) (Section

7) on cores with 8GB of memory on HiperGator 3.0 at the University of Florida. Only when

n = 50000 or p ≥ 1500 did we have have to increase the memory to 12GB per core. Thus, in

principle, these analyses could be performed on most modern laptop computers. Computing

times in the real data analyses were highly dependent on the number of candidate tuning

parameters and convergence tolerance. Fitting a 100 × 5 grid of candidate tuning parameters

with ϵ = 10−7 took 40 hours on average (over 50 replicates) with n = 20000 and p = 500.

To achieve the same high-accuracy solution with glmnet took 10 hours on average for the

same replicates. This makes sense since glmnet is solving the same problem our algorithm

solves with a 100 × 1 grid when λ = 0, so the computing time of our algorithm is roughly

in line with the state-of-the-art on this problem.

The authors intend to continually update the R package HierMultinom, so one could

expect these times will decrease as new versions are released. Please visit https://github.

com/ajmolstad/HierMultinom to download the most recent version.

Our method can require long computing times. This is a consequence of working with

the multinomial negative log-likelihood. The computation of the gradient, which is required

in every iteration of our algorithm, has calculations requiring O(Knp) and O(n2K) flops

where n is the number of cells in the training data, K the number of response categories,

and p the number of candidate predictors. However, in practice, there are many ways one

could significantly reduce the computing time, were this a concern. These include

• Relaxing the accuracy of solution. As shown in Table 3, a user can relax the

convergence tolerance and expect far shorter computing times. We found that in

general, the performance was relatively unaffected as long as ϵ ≤ 10−5: we provide

evidence of this in Figure 9.

• Parallelization. In the simulation studies and real data analyses, we computed the

entire solution path on a single core. However, this computation could be easily par-

allelized. Our code is structured so that one computes a solution path across all

candidate γ with λ held fixed. Thus, when we compute the solution path for 100× 10

candidate tuning parameters, if we have 10 cores available to us, each 100× 1 solution

path could be computed in parallel. This would correspond roughly to dividing each

of the computing times in the table by 10. In practice, we expect practitioners would

implement this approach in any real application, so rather than taking 40 hours, it

would take closer to 8 hours.
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• Number of candidate tuning parameters. Because timely computation was not

our main concern in the simulation studies, we considered a large number of candidate

tuning parameters. One could easily consider far fewer if computing time is a priority.

D.5 Overlapping Al

In this subsection, we perform a similar set of simulation settings as in Section 6, but with

A1 = {1, 2, 3}, A2 = {4, 5, 6}, A3 = {7, 8, 9}, A4 = {10, 11, 12}, and A5 = {1, 2, . . . , 6}. Just
as in the nonoverlapping case considered in the main manuscript, we consider six models

for β∗, Model 1–6. For each model, we first select 18 important predictors, then randomly

select s of the important predictors only distinguish between the coarse categories defined

by A3, A4, and A5. The remaining 18 − s are useful for distinguishing between all fine

categories. All other p− 18 predictors are irrelevant. Just as in the nonoverlapping case, for

j ∈ {1, . . . , 6}, Model j is defined by taking s = 3(j − 1). As before, nonzero values of β∗

are drawn independently N(0, 5). We consider p ∈ {100, 200, 500, 1000} for each model.

In this scenario, we consider two versions of Approx. In this setting, the method Approx

uses A1, . . . ,A4 (as defined in the Section 6) whereas Coarse-Approx uses A3,A4,A5. Both

versions of Approx are inspired by the existing methods of de Kanter et al. (2019) and Bern-

stein et al. (2021), who use conditional models to account for the multiresolution structure

of cell type.

We present Hellinger distance results for settings with overlapping Al in Figure 10. We

see relative performances vary across models in a similar pattern as in the simulations per-

formed in Section 6. Specifically, under Model 1 when all 18 important predictors distinguish

between all fine categories, we see that mrMLR and Group perform best. From Models 2–6, we

gradually see mrMLR outperform Group. By Model 4, mrMLR the interquartile range for both

methods no longer overlap. Of course, this agrees with intuition since mrMLR can exploit

that a large number of the important predictors only distinguish between some coarse cate-

gories to improve efficiency. The competitors which make use of this information, Approx and

Coarse-Approx, perform nearly as well as mrMLR under Model 6, but perform very poorly for

Models 1–3, and significantly worse than mrMLR in Models 4 and 5. Using Kullback–Leibler

divergence as a performance metric, in Figure 11 we again see a similar pattern as in Figure

7.

Finally, in Figure 12, we display classification error results under the data generating

model with overlapping coarse categories. As before, we also consider the competitors MSDA,
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RF, and HRF. We see the same general patterns as in the nonoverlapping coarse category case

(Figure 8), though in this setting HRF never significantly outperforms RF. In all settings, our

method mrMLR and Group outperform MSDA, RF, and HRF.

E Generating β∗ in the simulation studies

To provide some additional insight as to how we generate β∗ in the simulation studies, we

provide the R code below. Not that this code applies for Models 2–6 in the nonoverlapping

coarse category setting. Generating the coefficients under Model 1 is trivial.

groups <- list(1:3, 4:6, 7:9, 10:12)

s <- 3 + (Model - 2)*3

beta <- matrix(0, nrow=p, K)

coarse.inds <- sample(1:p, s)

for (kk in 1:4) {

gen.coefs <- rnorm(length(coarse.inds), sd = sqrt(5))%*%t(rep(1, length(groups[[kk]])))

beta[coarse.inds, groups[[kk]]] <- gen.coefs

}

fine.inds <- sample(c(1:p)[-coarse.inds], 18 - s)

for (kk in 1:4) {

for (ll in 1:length(fine.inds)) {

beta[fine.inds[ll], groups[[kk]]] <- rnorm(length(groups[[kk]]), sd = sqrt(5))

}

}

F Additional details from Section 7

F.1 Data preparation

Note that many of the details provided in this section are identical to those from Motwani

et al. (2023).

To prepare the data for our analysis, we first removed low-quality cells based on the

percentage of mitochondrial reads and number of genes expressed (with nonzero counts) in

each cell. Let X̃c be the full ñ × p̃ gene expression count matrix. Define sj =
∑p̃

g=1 X̃
c
j,g,

be the number of total counts for the jth cell. Also, let M ⊂ {1, . . . , p̃} be the set of
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mitochondrial genes. Define the percentage of mitochondrial reads to be

mj = 100 ·
∑
g∈M

X̃c
j,g

sj
.

Furthermore, define the number of expressed genes to be ej =
∑p̃

g=1 1(X̃
c
(j,g > 0). Let V

be the set of cells with no more than 5 percent mitochondrial reads and at least 200 genes

expressed

V = {j : mj < 5} ∩ {k : ek > 200}

and define n = |V| and X̃ = X̃c
V,: to be the filtered count matrix.

With low-quality cells removed, we then construct the normalized count matrix. Specif-

ically, the normalized matrix X is defined by

Xj,g = log

(
104 · X̃c

j,g

sj
+ 1

)
, j ∈ V , g ∈ [p̃].

This is the standard log-normalization used in the software Seurat.

Finally, we rank genes according to their variability after adjusting for their expected ex-

pression. Specifically, to rank genes for screening purposes we use the FindVariableFeatures

function in Seurat with selection.method = "vst" on the normalized matrix X and rank

genes according to the vst.variance.standardized column in descending order for each

dataset (Stuart et al., 2019). Given the ranking of all p̃ genes, G (where the first element of

G is most variable, and the pth element the least), when varying the number of genes p, we

take the first p genes from this ordered list, and reassign X = X:,G1:p .

F.2 Investigating selected genes

In this section, we display the expression of two genes which were estimated to distinguish

between certain cell types at a coarse resolution. Specifically, based on the estimated regres-

sion coefficient matrix in Figure 6, our method estimates that MS4A1 is able to distinguish

between B cell subtypes, but not between any other coarse cell type. In the top panel of

Figure 14, we see that the distribution of MS4A1 expression differs across B cell subtypes—it

appears B intermediate has somewhat higher expression than B memory and B naive—but

does not appear to be expressed much in any of the other coarse cell types. In the bottom

panel of Figure 14, we see that the expression of XCL2, which our method estimated to
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distinguish between the two types of NK cells, clearly separates NK and NK CD56bright.

Interestingly, we also see that XCL2 was estimated to distinguish between the fine CD8+

cells. In Figure 14, we see that some CD8+ TEM cells have higher log counts than any of

the other fine CD8+ cells.

Code for creating these plots—which can be modified to examine any gene—is available

with the code portion of the Supporting Information.

As mentioned in the main manuscript, we also include a tree-based visualization of the

cell type hierarchy characterized in Table 1. This plot was created using the PlotTopoTree

function from the HierFIT R package (Kaymaz et al., 2021).

F.3 Comparison to MSDA, RF, and HRF

In this section, we compare our method mrMLR and Group to MSDA, RF, and HRF in the single-

cell RNA-seq data analysis from Section 7.2. Because only mrMLR and Group model cell

type probabilities directly, we do not consider deviance here, but rather, focus exclusively on

classification accuracy. Results under the same setup described in Section 7.2 are provided

in Figure 16. As described in the main manuscript, both Group and mrMLR outperform the

competitors across every scenario we considered.

In addition to the five competitors mentioned above, we also used mrMLR-Or and RF-Or.

These are the methods mrMLR and RF but with the candidate genes restricted to only those

which were identified as marker genes in Hao et al. (2021). For mrMLR-Or, we set γ = 0 so that

all the marker genes from Hao et al. (2021) are included in the model, but they may affect

the cell type probabilities at various resolutions. Because this gene set was partially used to

actually label these cells, this constitutes “oracle” information—hence the designation -Or.

In Figure 16, we see that both oracle methods perform worse than mrMLR, which performs

both gene selection and model fitting simultaneously. Notably, RF-Or performs better than

RF. This can be explained by the fact that RF does not perform any type of variable selection,

so restricting attention to the marker gene set from Hao et al. (2021) improves performance.

However, both variants perform worse than both mrMLR-Or and mrMLR.

F.4 Additional figures

In Figure 6, we present a heatmap displaying the entire estimated coefficient matrix. This

is the matrix β̂, for which we display a submatrix in Figure 5 of the main manuscript.
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G Existing methods and extensions

G.1 Comparison of mrMLR to Motwani et al. (2023) and Molstad

and Rothman (2023)

One method related to our own, proposed by Motwani et al. (2023), also uses the multino-

mial logistic regression model for cell type annotation, but in the context of integrative cell

type annotation. Their motivation was to fit the multinomial logistic regression model in

a setting where the training data consist of multiple datasets from distinct studies whose

response labels are available at different resolutions. For example, a practitioner may have

one dataset where the responses labels are the fine cell types from Table 1 of the main

manuscript (of which there are 28 types) and another dataset where the response labels are

only the most coarse from Table 1 (of which there are 9). Motwani et al. (2023) use the

multiresolution structure of cell types to define the observed data log-likelihood and thus fit

a multinomial logistic regression model at the finest resolution possible. However, their fitted

model does not have the interpretability afforded by mrMLR. If one applied the estimator of

Motwani et al. (2023) to a single dataset (as in our motivating data analysis), this would be

equivalent to fitting mrMLR with λ = 0, i.e., the standard group lasso penalized multinomial

logistic regression (Vincent and Hansen, 2014). Our new multiresolution penalty could be

incorporated into the method of Motwani et al. (2023), though this would require substantial

modification of their computational algorithm. see Additional details about Motwani et al.

(2023) are provided in Web Appendix E.

There are notable methodological similarities between mrMLR and the estimator proposed

in Molstad and Rothman (2023), who focused on fitting the multivariate categorical re-

sponse regression model (i.e., regression model with multiple distinct categorical response

variables). In effect, the method of Molstad and Rothman (2023) shrinks a linear combina-

tion of regression coefficients from a multinomial logistic regression model using the penalty

λΦ(β) = λ
∑p

j=2∥P⊤βj,:∥2 where P is a matrix constructed so that each row of P⊤βj,: cor-

responds to the jth predictor’s effect on the log-odds ratio between different categorical

responses. This allowed for fitted models where some predictors could be interpreted as

affecting only the marginal distributions of the responses. While our proposed estimator

also penalizes the Euclidean norm of a linear combination of coefficients within a row of β,

the matrices P and D(al) have inherently distinct structures. For example, in the setting

where the multinomial logistic regression model corresponds to a bivariate binary categorical

response, P = (1,−1,−1, 1)⊤ ∈ R4. Moreover, unlike Φ, ΩA allows for multiple penalties to
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be applied to each row of β and allows for penalties on overlapping sets of coefficients. The

new multiresolution penalty thus requires novel computational and theoretical results, and

is needed to address a fundamentally different problem than that considered in Molstad and

Rothman (2023).

G.2 Application of mrMLR to integrative cell type annotation

In Motwani et al. (2023), the authors propose a method for fitting the multinomial logistic

regression model using multiple datasets from distinct studies whose response labels are

available at different resolutions. For more details on this setting, see Motwani et al. (2023).

While the multiresolution structure of the response is used in defining the observed data

log-likelihood, their method does not lead to the fitted model interpretability that the new

penalty described in this article provides. The purpose of this section is to describe how

we could, in principle, combine the main ideas proposed by Motwani et al. (2023) and this

paper.

We first recall some of the key notation from Motwani et al. (2023), ignoring their exten-

sion to account for batch effects (i.e., setting ρ = 0, named as IBMR-NG) for brevity (and com-

putational feasibility). Suppose we observe J ≥ 1 datasets with single-cell gene expression

profiles and cell types manually annotated. Let Cj denote the set of labels used to annotate

the jth dataset for j ∈ [J ] = {1, . . . , J} and let C denote the set of labels at the desired finest

resolution across all datasets. Let Y(j)i and Ỹ(j)i be the random variables corresponding to

the annotated cell type and true (according to the finest resolution label set) cell type of the

ith cell in the jth dataset for j ∈ [J ], i ∈ [nj] = {1, . . . , nj}, with supports Cj and C, respec-
tively. Define the user-specified binning function fj : C → Cj which maps a finest resolution

category to the label used to describe that category in the jth dataset. Also, define the

“unbinning” function gj = f−1
j (inverse image) where gj(k) = f−1

j (k) = {l ∈ C : fj(l) = k}
for k ∈ Cj. We also now define the relationship between Y(j)i and Ỹ(j)i through the following

equivalence of events

{Y(j)i = k} =
⋃

l∈gj(k)

{Ỹ(j)i = l}, j ∈ [J ], k ∈ Cj.

We thus have that

Pr(Y(j)i = k | x(j)i) =
∑

l∈gj(k)

Pr(Ỹ(j)i = l | x(j)i), j ∈ [J ], k ∈ Cj (18)
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since the events {Ỹ(j)i = l} and {Ỹ(j)i = l′} with l, l′ ∈ gj(k) and l ̸= l′ are mutually exclusive

as a cell can only be of one cell type. Under the multinomial logistic regression model, the

log-likelihood contribution for the ith cell in the kth dataset can be expressed as

ℓC,g(j)i(β) =
∑
k∈Cj

1(y(j)i = k) log

 ∑
l∈gj(k)

exp(x⊤(j)iβ:,l)∑
v∈C exp(x

⊤
(j)iβ:,v)


for j ∈ [J ] and i ∈ [nj], where 1 denotes the indicator function. Motwani et al. (2023)

therefore define the (scaled by 1/N) negative log-likelihood as

LC,g(β) = − 1

N

J∑
j=1

nj∑
i=1

ℓC,g(j)i(β),

where N =
∑J

j=1 nj is the total sample size. The IBMR-NG estimator proposed by Motwani

et al. (2023) is defined as

arg min
β

{
LC,g(β) + λ

p∑
j=2

∥βj,:∥2

}
. (19)

However, as mentioned earlier, this estimator does not provide interpretability in terms of

which genes help to distinguish between which subsets of cell types. Therefore, we can use

the penalty proposed in this paper, which would yield the estimator

arg min
β

{
LC,g(β) + λ

p∑
j=2

∥βj,:∥2+γΩA(β)

}
, (20)

recalling that

ΩA(β) = λ

p∑
j=2

L∑
l=1

wl

(
min
c∈R

∥βj,Al
− c1al∥2

)
.

The computational developments in Section 4 can be used to compute (20). The theoretical

results in Section 5, however, will not apply to (20) since there is, in effect, a loss of infor-

mation when some of the responses are labeled at a coarser resolution. We leave a rigorous

study of (20) – computationally, theoretically, and empirically – as a direction for future

research.
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G.3 Hierarchical classification and tree-based effect aggregation

Finally, we note that the problem of classification with response categories organized in a

known hierarchy is well-studied in machine learning: see, for example, Wang et al. (2009,

2011); Silla and Freitas (2011). Broadly speaking, the majority of methods for hierarchical

classification are not model-based, and thus classifiers are often difficult to interpret. To

the best of our knowledge, no existing method is designed to yield fitted model that can be

interpreted in the way afforded by mrMLR. Moreover, many existing approaches fit distinct

conditional classifiers at each level of the hierarchy, which can be less efficient and more

difficult to interpret than fitting a single unified model: e.g., see the performance of Coarse

and Coarse-Approx in our simulation studies.

There is also work on tree-structured effect-aggregation in the context of regression (Yan

and Bien, 2021; Shao et al., 2021), an in Gaussian graphical modelling (Wilms and Bien,

2022). Most relevant to our work, Yan and Bien (2021) proposed a method for encouraging

coefficient equality in the context of rare predictor aggregation for linear regression. In brief,

they require that predictors to be aggregated (i.e., predictors whose corresponding coefficients

are equivalent) are related through a tree-structure. Our method would not require such a

hierarchy, but could be computationally burdensome to implement in their context. The

notion of false split rate, introduced in Shao et al. (2021), could be adopted in the context

of multiresolution categorical regression: we leave this extension as future work.
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Figure 6: The entire matrix β̂ from Section 7.3. Grey cells are those with estimated coefficient
values distinct from all others in their row, whereas cells of the same (non-grey) color have
identical coefficient values within a row.
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Figure 7: Kullback-Leibler divergences over 100 independent replications under Models 1–6
with p ∈ {100, 200, 500, 1000} and Al = {3(l − 1) + 1, 3(l − 1) + 2, 3l} for l ∈ [4].
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Figure 8: Classification errors over 100 independent replications under Models 1–6 with
p ∈ {100, 200, 500, 1000} and Al = {3(l − 1) + 1, 3(l − 1) + 2, 3l} for l ∈ [4].
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Figure 9: Kullback-Leibler divergences of mrMLR with convergence tolerances ϵ ∈
{10−9, 10−7, 10−5} under the same data generating models as described in Section 6.
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Figure 10: Hellinger distance over 100 independent replications under Models 1–6 with
p ∈ {100, 200, 500, 1000}, Al = {3(l − 1) + 1, 3(l − 1) + 2, 3l} for l ∈ {1, 2, 3, 4}, and A5 =
{1, . . . , 6}.

30



0.0

0.5

1.0

1.5

100 200 500 1000

K
L 

di
ve

rg
en

ce

Model 1

0.0

0.5

1.0

1.5

100 200 500 1000

Model 2

−0.5

0.0

0.5

1.0

1.5

100 200 500 1000

Model 3

−0.5

0.0

0.5

1.0

1.5

100 200 500 1000
p

lo
g(

K
L 

di
ve

rg
en

ce
)

Model 4

0

1

100 200 500 1000
p

Model 5

−1

0

1

100 200 500 1000
p

Model 6

−0.5

0.0

0.5

1.0

1.5

100 200 500 1000
p

lo
g(

K
L 

di
ve

rg
en

ce
)

Method Group L1 mrMLR Approx Coarse−Approx

Model 4

Figure 11: Kullback-Leibler divergences over 100 independent replications under Models 1–6
with p ∈ {100, 200, 500, 1000}, Al = {3(l − 1) + 1, 3(l − 1) + 2, 3l} for l ∈ [4], and A5 = [6].
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Figure 12: Classification errors over 100 independent replications under Models 1–6 with
p ∈ {100, 200, 500, 1000}, Al = {3(l − 1) + 1, 3(l − 1) + 2, 3l} for l ∈ [4], and A5 = [6].
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Figure 15: A visualization of the cell-type hierarchy characterized in Table 1 of the main
manuscript.
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