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A Convex approximation

A.1 Proposed estimator

As both Cr and As are nonconvex sets, the optimization problem in (3) is nonconvex. Hence,
there is no guarantee that our algorithm converges to a global minimizer. A common
alternative is to approximate (nonconvex) L0 constraints with (convex) L1 constraints.
Applied to (3), this would correspond to the estimator

arg min
B∈Rp×J

{−L(B) + γ1‖B‖∗ + γ2‖B‖1,2} (11)

where ‖ · ‖∗ is the nuclear norm (i.e., the norm which sums the singular values of its
matrix-valued argument), ‖A‖1,2 =

∑p
j=1 ‖Aj,·‖2, and (γ1, γ2) ∈ [0,∞)× [0,∞) are tuning

parameters. Large values of γ1 will force many singular values of B to be zero, thus reducing
its rank. Similarly, when γ2 is large, the second penalty will force many entire rows of B to
be zero. The estimator (11) can thus be thought of as a convex approximation to (3).

While this estimator may seem appealing, we encounter three issues with (11). First, the
use of two penalties often leads to over-shrinkage towards the origin. Second, identifying a
tuning parameter pair that leads to both low-rank and sparse estimates of B∗ was difficult
in the settings we considered. To choose a γ1 which led to low-rankness, it was most often
the case that (11) needed to be entirely nonzero, whereas to achieve a sparse estimate,
(11) often needed to be of full rank. Third, computing (11) requires solving a difficult
optimization problem. To the best of our knowledge, there exists no standard algorithm for
solving optimization problems like (11). In the following subsection, we propose a proximal-
proximal gradient descent algorithm (Ryu and Yin, 2019) for computing (11) that may be of
independent interest. In our simulation studies, we show that despite the virtues of convexity,
(3) outperforms (11) to a notable extent.
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A.2 Computing the convex approximation

As mentioned in preceding section, the optimization problem in (11) is convex. Solving this
optimization problem is especially challenging because the penalties are a function of all
columns of B, making the optimization problem nonseparable across populations. However,
like many penalized maximum likelihood estimators, the corresponding optimization problem
can be expressed as the sum of differentiable and nondifferentiable functions, which suggests
that we may employ “splitting algorithms” to solve (11). We use the so-called proximal-
proximal gradient descent algorithm (Ryu and Yin, 2019), also known as the Davis-Yin
splitting algorithm (Davis and Yin, 2017), for computing (11) with γ1 > 0 and γ1 > 0.

Throughout this section, we refer to the proximal operator of a function h, denoted proxh,
which we define as

proxh(B) = arg min
A

{
1

2
‖A−B‖2

F + h(A)

}
.

To employ the proximal-proximal gradient descent algorithm, we need only be able to evaluate
the proximal operators of ‖ · ‖∗ and ‖ · ‖1,2 separately, and compute the gradient of L with
respect to B. Specifically, we update three sets of variables at each iteration: B ∈ Rp×J ,
B̃ ∈ Rp×J , and Θ ∈ Rp×J . Given α > 0, a sufficiently small step size parameter, the updating
equations to obtain the (t)th set of iterates are

B(t) = proxαγ1‖·‖∗(Θ
(t−1)),

B̃
(t)

= proxαγ2‖·‖1,2{2B
(t) −Θ(t−1) + α∇L(B(t))},

Θ(t) = Θ(t−1) + B̃
(t)
−B(t).

To lend intuition to this procedure, note that if γ1 = 0, then B(t) = Θ(t−1), so that iterates
above would be exactly the iterates of the standard proximal gradient descent algorithm with
step size parameter α (Parikh and Boyd, 2014, Section 4.2). However, applying proximal
gradient descent to (11) with both γ1 > 0 and γ2 > 0 directly would be problematic because
this would require computing the proximal operator of the sum of two penalties, which would
require its own iterative procedure.

The proximal-proximal gradient descent algorithm above is particularly efficient because
each of the iterates can be computed in closed form. In particular, for a matrix A,

proxτ‖·‖∗(A) = Λsoft(Φ, τ)Γ>, (12)

where A = ΛΦΓ> is the singular value decomposition of A (where Φ is diagonal with
nonnegative entries, Λ>Λ = I, and Γ>Γ = I) and soft is the soft thresholding operator
applied elementwise to its argument, i.e., for all pairs (j, k),

[soft(C, τ)]j,k = max (|Cj,k| − τ, 0) sign(Cj,k).

For a derivation of (12), see the proof of Proposition 1 of Zhou and Li (2014), for exam-
ple. Similarly, the proximal operator of the ‖ · ‖1,2 norm also has a closed form. Letting
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[proxτ‖·‖1,2(A)]j,· denote the jth row of the proximal operator of τ‖ · ‖1,2 evaluated at

A ∈ Ra×b, we have

[proxτ‖·‖1,2(A)]j,· =

{
Aj,·

(
1− τ

‖Aj,·‖2

)
: ‖Aj,·‖2 > τ

0 : ‖Aj,·‖2 ≤ τ
, j ∈ [a].

Applying a result from Davis and Yin (2017), it follows that if α > 0 is fixed sufficiently
close to zero – according to the Lipschitz constant of ∇L – then the sequence of iterates

defined above satisfy B(t) → B?, B̃
(t)
→ B? as t→∞ where B? is a solution to (11).

While the proximal-proximal gradient descent algorithm is easy to implement, fixing the
step size α can often lead to slow convergence in practice. In our implementation, we use a
version of this algorithm proposed by Pedregosa and Gidel (2018) which selects step sizes
adaptively using a backtracking line search. We found that in practice, this approach led to
much shorter computing times than the version with α fixed. Specifically, we implement a
version of Variant 1 of Algorithm 1 from Pedregosa and Gidel (2018) applied to (11).

When either γ1 = 0 or γ2 = 0, we instead use an accelerated proximal gradient descent
algorithm (Parikh and Boyd (2014), Sections 4.2–4.3) to solve (11). For more on the
accelerated proximal gradient descent algorithm, see Beck and Teboulle (2009).

B Tuning parameter selection

There are numerous criteria used to selecting tuning parameters for fitting penalized Cox
proportional hazards models. For example, glmnet uses cross-validated partial likelihood.
In our implementation, however, we instead implement a cross-validated linear predictors
criterion proposed in Dai and Breheny (2019). Specifically, for each j ∈ [J ], we randomly
assign subjects to one of V folds, K(j)1, . . . ,K(j)V , where K(j)1, . . . ,K(j)V is a partition of

[n(j)]. For the vth fold, we compute B̂ r̃,s̃,(v) by fitting (3) to all subjects not belonging to the
vth fold with s = s̃ and r = r̃. Then, for each i ∈ K(j)v, we compute and store

φ(j)i,(r̃,s̃) = x>(j)iB̂ r̃,s̃,(v) j ∈ [J ],

for each v ∈ [V ]. Thus, with φ(j)1,(r̃,s̃), . . . , φ(j)n(j),(r̃,s̃) in hand, we select the tuning pair (r̂, ŝ)
which maximizes the (weighted) partial log-likelihood

(r̂, ŝ) = arg max
(r̃,s̃)∈T

1

J

J∑
j=1

[
w(j)

n(j)∑
i=1

δ(j)i log

{
exp(φ(j)i,(r̃,s̃))∑

k∈R(j)i
exp(φ(j)k,(r̃,s̃))

}]
, (13)

where T is a prespecified (discrete) set of candidate tuning parameters and w(j) ≥ 0 are
weights corresponding to the jth dataset. In our simulations and real data analysis, we set
w(j) = 1, but there may be settings where one would prefer to use w(j) 6= n(j′) for some pairs
j 6= j′. We found (13) worked better than cross-validated partial likelihood, particularly
when many subjects’ survival times were censored. This is partly because cross-validated
linear predictors do not require constructing a risk set separately for each fold: see Dai and
Breheny (2019) for more on this approach.
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Note also that one should be mindful of the tuning parameter µ and initial penalty
parameter ρ0 when performing V -fold cross-validation. When leaving out the vth fold for
model fitting, the effect of µ and ρ will be different because the magnitude of the partial
log-likelihood depends on the sample size. Roughly speaking, µ and ρ0 should be scaled by
(V − 1)/V during V -fold cross-validation, and should be returned to their original values for
fitting the model to the entire dataset. For example, in Section 6, we set µ ≈ (4/5)50 during
5-fold cross-validation, and set µ = 50 for fitting the model to the complete dataset.

C Simulation study performance metrics

We use three performance metrics in our simulation studies: model error, C-index, and Brier
score.

Model error, defined as tr{(B̂ − B∗)>Σ(B̂ − B∗)}, quantifies the accuracy of the
linear predictors. In the context of our simulation study, this can be thought of as∑J

j=1 limn(j)→∞ ‖X(j)(b∗(j) − b̂(j))‖2
2/n(j). C-index, in contrast, measures the degree of agree-

ment in ordering between the linear predictor and the observed event times. As no outcomes
are censored in our simulation study testing set, the C-index between the linear predictors
and the observed outcomes can simply be expressed

1

J

J∑
j=1

ntest∑
i=1

ntest∑
k=1

1(y(j)i > y(j)k){1(x>(j)ib̂(j) < x
>
(j)kb̂(j)) + 1

2
× 1(x>(j)ib̂(j) = x>(j)kb̂(j))}∑ntest

s=1

∑ntest

t=1 1(y(j)s > y(j)t)
.

Note that a C-index of one indicates perfect agreement in ordering between observed outcomes
and estimated linear predictors, whereas a C-index of 0.5 suggests that a model is no better
than randomly guessing the order of the linear predictors. Hence, unlike model error, a higher
C-index indicates better performance.

Finally, we also measure the Brier score evaluated at the median observed survival time.
When there is no censoring, the Brier score for the jth population at time t is defined as

B(t | b̂(j)) =
1

ntest

ntest∑
i=1

{
1(y(j)i > t)− Ŝ(j)(t | x(j)i, b̂(j))

}2
,

where Ŝ(j)(t | x(j)i, b̂(j)) is the estimated survival probability at time t in the jth population

based on estimate b̂(j) for a subject with predictors x(j)i. Then, the (averaged) Brier score

we report is J−1
∑J

j=1B(q0.5({y(j)i}ntest
i=1 ) | b̂(j)), where q0.5 is the median of its set-valued

argument. We also recorded Brier scores based on the 25th and 75th percentiles, but found
their performances to be similar to the 50th.

D Proof of Theorems 4 and 4

In this section, we prove the theoretical results in Section 4 of main manuscript. We will first
list the assumptions under which we establish the asymptotic distribution of B̂r∗ .

4



(A1) The data are independent and identically distributed from the Cox proportional
hazards model described in Section 1 and rank(B∗) = r∗.

(A2) For all J populations, the data are collected on the finite time interval [0, L] only.

(A3) For each j ∈ [J ] support of x(j), χ(j), is a subset of Rp and maxj∈[J ] supx∈χ(j)
‖x‖∞ ≤

K, for some finite K ∈ R.

(A4) For each j ∈ [J ], we assume that there exists a finite constant τ(j) ∈ (0,∞) such
that P(C(j) ≤ τ(j)) = 1, P(C(j) = τ(j)) > 0 and P(T(j) > τ(j)) > 0.

(A5) For each j ∈ [J ], n(j)/n→ κ(j) ≥ δ > 0 for some δ > 0 where
∑J

j=1 κ(j) = 1.

(A6) The data from each of the J populations are generated independently.

(A7) For all j ∈ [J ] and s ∈ [0, L], assume that there exist s 7→D∗(j)(s) such that

(a) n−1
(j)

∑
i≤n(j)

Y(j)i(s) exp(b>∗(j)x(j)i)(x(j)i−x̄(j)(s))(x(j)i−x̄(j)(s))
> p→D∗(j)(s) point-

wise,

(b)
∫ L

0
D∗(j)(s)dH(j)(s) is positive definite, where H(j)(s) is the cumulative baseline

hazard for the jth population evaluated at s.

The above assumptions warrant some discussion. Assumption (A1) ensures that the model is
well specified. Assumption (A2) can be easily be relaxed to allow for different finite intervals
for each population. Assumptions (A3), (A4), and (A7) ensure that each of the J popula-
tions have finite information. These assumptions are borrowed from Hjort and Pollard (2011)
who studied the Cox model in a single population. They are weaker than those of Andersen
and Gill (1982), e.g., Andersen and Gill (1982) require the convergence in assumption (A7)
to be uniform in s and for every b in the neighborhood of b∗(j), while (A7)(a) requires only
pointwise convergence and only at the true regression coefficient. The bounded covariates
assumption in (A3) can be relaxed with some careful calculations. Assumption (A5) ensures
that each population is “equally” represented in the data. Assumption (A6) allows us to
establish the joint distribution of unconstrained maximum likelihood estimators (MLEs) for
each of the J population.

With these assumptions in hand, we establish our first intermediate result on the consis-
tency of B̂r∗ .

Lemma D.1 (Consistency). Under assumptions (A1) – (A6), the constrained MLE is

consistent, i.e., ‖vec(B̂r∗ −B∗)‖2 = op(1).

Proof. Note that a Wald-type proof of consistency of the (constrained) maximum likelihood
estimator is not possible because of the discontinuity of the profiled likelihoods. Instead, we
will use techniques discussed in Section 5.3.2 of Van der Vaart (2002) to prove consistency of
the MLE for a single population. Because the rank constraint requires that the MLE depend
on data from all J populations, the results from Van der Vaart (2002) cannot be applied to
each of the populations separately.
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Let Ĥ(j) be the cumulative baseline hazard function corresponding to the estimated

baseline hazard ĥ(j)0.

For any bounded perturbation λ(j), let us define dĤ(j)tj = (1 + tjλ(j))dĤ(j). The joint like-

lihood at (B̂r∗ , Ĥ(1)t1 , . . . , Ĥ(J)tJ ) viewed as a function of t = (t1, . . . , tJ) must be maximized

at t = 0 with B̂r∗ kept fixed. Thus we have J stationary equations, for each j ∈ [J ],

Pn(j)
δ(j)λ(j)(y(j)) =

∫
[Pn(j)

exp(b̂
>
(j)x(j))1s≤y(j)

]λ(j)(s)dĤ(j)(s),

where for every j ∈ [J ] and function f : R× χ→ R, we define

Pn(j)
f := n−1

(j)

n(j)∑
i=1

f(y(j)i,x(j)i).

By replacing λ(j)(s) by λ(j)(s)/[Pn(j)
exp(b̂

>
(j)x(j))1s≤y(j)

], we get for all j ∈ [J ],∫
λ(j)(s)dĤ(j)(s) = Pn(j)

δ(j)λ(j)(y(j))

M̂n(j)(y(j))
, where M̂n(j)(s) := Pn(j)

exp(b̂
>
(j)x(j))1s≤y(j)

.

Note that the likelihood at (B̂r∗ , Ĥ(1)t1 , . . . , Ĥ(J)tJ ) is not comparable to the likelihood at
(B∗, H∗(1), . . . , H∗(J)), where for j ∈ [J ], H∗(j) is cumulative hazard function corresponding

to h∗(j)0. This is because when maximizing the joint likelihood, the Ĥ(j)tj are restricted to
have discontinuities at the data points while H∗(j) can be arbitrary. To overcome this, let us

define an intermediate quantity H̃(j) for each j ∈ [J ] that satisfies∫
λ(j)(s)dH̃(j)(s) = Pn(j)

δ(j)λ(j)(y(j))

M(j)(y(j))
, where M(j)(s) := P(j) exp(b>∗(j)x(j))1s≤y(j)

,

where for every j ∈ [J ] and function f : R× χ(j) → R, we define

P(j)f :=

∫
f(y,x)dP(j)(y,x),

where P(j) denotes the joint distribution of (y,x) for the jth population. By assumption
(A4), we have that

M(j)(s) := P(j) exp(b>∗(j)x(j))1s≤y(j)
≥ P(j) exp(b>∗(j)x(j))1τ(j)≤y(j)

is strictly bounded away from zero. Thus if λ(j) varies over a Glivenko-Cantelli class then∫
λ(j)(s)dH̃(j) →

∫
λ(j)(s)dH∗(j) uniformly over λ(j)(s).

Now we will compare the likelihood at (B̂r∗ , Ĥ(1), . . . , Ĥ(J)) to the likelihood at (B∗, H̃(1), . . . , H̃(J)).

Note that this is doable because both Ĥ(j) and H̃(j) have point masses at the observed data

and both B̂r∗ and B∗ belong to the set of rank r∗ matrices. Comparing the likelihood, for
each j ∈ [J ], we get

(b̂(j)−b∗(j))>Pn(j)
x(j)δ(j)−Pn(j)

(
eb̂
>
(j)x(j)Ĥ(j)(y(j))− eb

>
∗(j)x(j)H̃(j)(y(j))

)
+Pn(j)

δ(j)

M(j)(y(j))

M̂n(j)(y(j))
≥ 0.

(14)
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As ‖b̂(j)‖2 ≤ ‖B̂r∗‖F ≤M (see Section 4 of the main manuscript), by multiple applications
of the Glivenko-Cantelli theorem, we will show that for all j ∈ [J ] and almost all ω, there exists
b∞(j)(ω) and H∞(j)(ω)(·) (a non-decreasing, cadlag function H∞(j)(ω) : [0,∞) → R+ with

H∞(j)(ω)(0) = 0) such that along a subsequence (b̂(j)(ω), Ĥ(j)(ω)) → (b∞(j)(ω), H∞(j)(ω))
and

(b∞(j)−b∗(j))>P(j)x(j)δ(j)−P(j)

(
eb
>
∞(j)x(j)H∞(j)(y(j))− eb

>
∗(j)x(j)H∗(j)(y(j))

)
+P(j)δ(j)

M(j)(y(j))

M∞(j)(y(j))
≥ 0,

(15)
where

M∞(j)(s) := P(j)e
b>∞(j)x(j)1s≤y(j)

and

∫
λ(j)dH∞(j) = P(j)

δ(j)λ(j)(y(j))

M∞(j)(y(j))
.

Now note that by a perturbation similar to the one in the beginning of the proof, we have
that ∫

λ(j)(s)dH∗(j)(s) = P(j)

δ(j)λ(j)(y(j))

M(j)(y(j))
.

Let l(bn(j), Hn(j)) be the likelihood evaluated at (bn(j), Hn(j)). By observing thatM(j)/M∞(j)(y(j)) =
dH∞(j)/dH∗(j), we see that (15) implies that

P(j) log{l(b∞(j), H∞(j))/l(b∗(j), H∗(j))} ≤ 0,

which by uniqueness of (b∗(j), H∗(j)) implies that (b∞(j), H∞(j)) = (b∗(j), H∗(j)) almost surely.
The proof will be complete if we can show that (14) implies (15) for each of the populations

separately. This is done on page 392 of Section 5.3.2 of Van der Vaart (2002). This last
step uses the fact that χ(j) is a bounded set (assumption (A3)) and the fact that uniformly
bounded cadlag functions on bounded support are Glivenko-Cantelli.

D.1 Proof of Theorem 4

Next, we prove the asymptotic normality of vec(B̂r∗ −B∗). For the remainder of this section,
we take r = r∗. For every j ∈ [J ], define

R(j)(s, b) :=

n(j)∑
i=1

1(y(j)i ≥ s)exp
(
x>(j)ib

)
and dN(j)i(s) = 1

(
y(j)i ∈ [s, s+ ds], δ(j)i = 1

)
.

(16)
Recall that the partial log likelihood for the data is

L(B) :=
J∑
j=1

n(j)∑
i=1

δ(j)i

[
x>(j)ib(j) − log

{ ∑
k∈R(j)i

exp
(
x>(j)kb(j)

)}]

=
J∑
j=1

n(j)∑
i=1

∫ L

0

[
x>(j)ib(j) − logRj(s, b(j))

]
dN(j)i(s),

(17)
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where the risk set R(j)i is defined Section 1 of the manuscript. Let us now define a number of
important quantities. For two (compatible) matrices J and K, let the notation J [,1:r] denote
the first r columns of J , and let [J ,K] denote the matrix which concatenates J and K by

columns. Let ej ∈ Rr denote the jth basis vector for j ∈ [r]. Let Ũ ∈ Rp×r and Ṽ ∈ R(J−r)×r

be two unique matrices such that

B∗ = [Ũ Ṽ
>
, Ũ ].

For any vector β ∈ Rpr+Jr, we use the shorthand

βŨ := β[1:pr], and for j ∈ [J ], βṼ (j)
:= β[(pr+(j−1)r+1):(pr+jr)]. (18)

Further, let α := (vec(Ũ)>, vec([Ṽ
>
, Ir])

>)> ∈ Rpr+Jr so that we may write, for example,

αṼ (j)
=

{
Ṽ [j,] for j ≤ J − r,
ej−(J−r) for j > J − r.

Finally, let us define the matrices T and T 1 as

T :=

[([
Ṽ
Ir

]
⊗ Ip

)
, IJ ⊗ Ũ

]
∈ RpJ×(pr+Jr),

T 1 := T [,1:(pr+r(J−r))] =

[([
Ṽ
Ir

]
⊗ Ip

)
, (IJ)[,1:(J−r)] ⊗ Ũ

]
∈ RpJ×(pr+r(J−r)).

(19)

To simplify our notation, we re-express the partial log-likelihood in (17) as L : Rpr+Jr → R
with

L(β) :=
J∑
j=1

n(j)∑
i=1

∫ L

0

[
x>(j)ib(j)(β)− logRj{s, b(j)(β)}

]
dN(j)i(s),

where for any β ∈ Rpr+rJ , with a slight abuse of notation, we redefine b(j) : Rpr+rJ → Rp,

b(j)(β) := (β>
Ṽ (j)
⊗ Ip)βŨ ∈ Rp, (20)

with βṼ (j)
and βU as defined in (18). In the above notation b(j)(α) = b∗(j) for all j ∈ [J ].

Next, define

x̄(j)(s) :=

n(j)∑
i=1

x(j)iπ(j)i(s), F(j)(s) :=

n(j)∑
i=1

π(j)i(s)
(
x(j)i − x̄(j)(s)

)(
x(j)i − x̄(j)(s)

)>
,

and π(j)i(s) :=
1(y(j)i ≥ s) exp(x>(j)ib∗(j))

Rj(s, b∗(j))
.

Letting
G := Rpr+r(J−r) × {0} × . . .× {0}︸ ︷︷ ︸

r2

, (21)
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in Lemma E.1, we show that for any ν ∈ G, we can write

logR(j){s, b(j)(α+ ν)}− logR(j){s, b(j)(α)} = x̄(j)(s)
>γ(j)(α,ν) (22)

+
1

2
γ(j)(α,ν)>F(j)(s)γ(j)(α,ν) + r(j)(γ(j)(α,ν), s),

where b(j)(·) is as defined in (20) and

γ(j)(α,ν) := b(j)(α+ν)−b(j)(α) = (ν>
Ṽ (j)
⊗Ip)αŨ +(α>

Ṽ (j)
⊗Ip)νŨ +(ν>

Ṽ (j)
⊗Ip)νŨ . (23)

Note that for j > J − r, we have γ(j)(α,ν) = (νŨ)[(jp−p+1):jp] since in this case, νṼ (j)
= 0r

(by (21)) and αṼ (j)
= ej−(J−r). Thus we have that

L∗(ν) := L
(
α+ ν/

√
n
)
− L(α)

=
J∑
j=1

n(j)∑
i=1

∫ L

0

(x(j)i − x̄(j)(s))
>γ(j)(α,ν/

√
n)dN(j)i(s)

−
J∑
j=1

n(j)∑
i=1

∫ L

0

[1

2
γ(j)(α,ν/

√
n)>F(j)(s)γ(j)(α,ν/

√
n)− r(j)

(
γj(α,ν/

√
n), s

)]
dN(j)i(s)

=
J∑
j=1

√
na>(j)γ(j)(α,ν/

√
n)−

J∑
j=1

n

2
γ(j)(α,ν/

√
n)>D(j)γj(α,ν/

√
n)

−
J∑
j=1

n(j)∑
i=1

∫ L

0

r(j)

(
γj(α,ν/

√
n), s

)
dN(j)i(s)

=
J∑
j=1

a>(j)(ν
>
Ṽ (j)
⊗ Ip)αŨ +

J∑
j=1

a>(j)(α
>
Ṽ (j)
⊗ Ip)νŨ + n−1/2

J∑
j=1

a>(j)(ν
>
Ṽ (j)
⊗ Ip)νŨ

− 1

2

J∑
j=1

(
(ν>
Ṽ (j)
⊗ Ip)αŨ + (α>

Ṽ (j)
⊗ Ip)νŨ

)>
D(j)

(
(ν>
Ṽ (j)
⊗ Ip)αŨ + (α>

Ṽ (j)
⊗ Ip)νŨ

)
− 1√

n

J∑
j=1

(
(ν>
Ṽ (j)
⊗ Ip)νŨ

)>
D(j)

(
(ν>
Ṽ (j)
⊗ Ip)αŨ + (α>

Ṽ (j)
⊗ Ip)νŨ

)
− 1

2n

J∑
j=1

(
(ν>
Ṽ (j)
⊗ Ip)νŨ

)>
D(j)

(
(ν>
Ṽ (j)
⊗ Ip)νŨ

)
−

J∑
j=1

n(j)∑
i=1

∫ L

0

r(j)

(
γ(j)(α,ν/

√
n), s

)
dN(j)i(s),

where

a(j) := n−1/2

n(j)∑
i=1

∫ L

0

(x(j)i−x̄(j)(s))dN(j)i(s) ∈ Rp, and D(j) := n−1

n(j)∑
i=1

∫ L

0

F(j)(s)dN(j)i(s) ∈ Rp×p.

(24)
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Note that the scaling above is with respect to the n =
∑J

j=1 n(j). Defining

rn(ν) := n−1/2

J∑
j=1

a>(j)(ν
>
Ṽ (j)
⊗ Ip)νŨ −

1

2n

J∑
j=1

(
(ν>
Ṽ (j)
⊗ Ip)νŨ

)>
D(j)

(
(ν>
Ṽ j
⊗ Ip)νŨ

)
−

J∑
j=1

n(j)∑
i=1

∫ L

0

r(j)

(
γ(j)(α,ν/

√
n), s

)
dN(j)i(s)

− 1√
n

J∑
j=1

(
(ν>
Ṽ (j)
⊗ Ip)νŨ

)>
D(j)

(
(ν>
Ṽ j
⊗ Ip)αŨ + (α>

Ṽ (j)
⊗ Ip)νŨ

)
,

(25)

observe that L∗(ν) is a quadratic in ν with the following expression:

L∗(ν) = Ãν − 1

2
ν>Qν + rn(ν), (26)

where

Ã :=



∑J
j=1 a

>
(j)(α

>
Ṽ (j)
⊗ Ip)

a>(1)vec−1(αŨ )

a>(2)vec−1(αŨ )
...

a>(J)vec−1(αŨ )



>

= (a>(1),a
>
(2), · · · ,a>(J))

[([
Ṽ
Ir

]
⊗ Ip

)
, IJ ⊗ Ũ

]
︸ ︷︷ ︸

T

= A>T ,

with
A> := (a>(1),a

>
(2), · · · ,a>(J)), (27)

and T as defined in (19). Moreover, Q can be expressed

Q :=



∑J
j=1(α

>
Ṽ (j)
⊗ Ip)

>D(j)(α
>
Ṽ (j)
⊗ Ip) (α>

Ṽ (1)
⊗ Ip)

>D(1)Ũ . . . . . . (α>
Ṽ (J)
⊗ Ip)

>D(J)Ũ

Ũ
>
D(1)(α

>
Ṽ (1)
⊗ Ip) Ũ

>
D(1)Ũ 0 . . . 0

Ũ
>
D(2)(α

>
Ṽ (2)
⊗ Ip) 0 Ũ

>
D(2)Ũ . . .

...

...
... 0

. . . 0

Ũ
>
D(J)(α

>
Ṽ (J)
⊗ Ip) 0 . . . 0 Ũ

>
D(J)Ũ


.

and
D := BlockDiag{D(j)}Jj=1 ∈ RpJ×pJ , (28)

so that we may alternatively write Q more compactly as

Q = T>DT .

Since ν ∈ G has r2 constrained coordinates, we will now rewrite the (centered) partial
likelihood in terms of the free coordinates, which we denote by η ∈ Rpr+r(J−r), i.e., ν> =

10



(η>,0>r2). Thus writing (26) as function of η, we get

L̃(η) := L∗(ν) = A>Tν − 1

2
ν>(T>DT )ν + rn(ν)

= A>T 1η −
1

2
η>(T>1DT 1)η + rn{(η>,0>r2)>},

(29)

where A,D, and T 1 are as defined in (27), (28), and (19), respectively. Letting η̂ be the

maximizer of L̃(·) (note that this is unique), (26) and Lemma E.1 imply

L̃
(
0pr+r(J−r)

)
= 0 ≤ A>T 1η̂ −

1

2
η̂>(T>1DT 1)η̂ + rn{(η̂>,0>r2)>} = L̃(η̂). (30)

We will now show that ‖η̂‖2 = Op(1). Recall that by consistency of the rank constrained
MLE (Lemma D.1) we have that

‖η̂‖2√
n

= op(1).

Thus by (37) (Lemma E.1), we have that

rn{(η̂>,0>r2)>} = Op

(
‖η̂‖2

2√
n

+
‖η̂‖4

2

n
+
‖η̂‖3

2√
n

[
1 +

(
‖η̂‖2√
n

)3
])

= Op

(
‖η̂‖2

2

[
n−1/2 +

‖η̂‖2
2

n
+
‖η̂‖2√
n

[
1 +

(
‖η̂‖2√
n

)3 ]])
= op(‖η̂‖2

2).

(31)

Suppose ‖η̂‖2 →∞. Dividing (30) by (1 + ‖η̂‖2)2, by the above display we get

0 ≤ A>T 1
η̂

(1 + ‖η̂‖2)2
− 1

2

(T 1η̂)>D(T 1η̂)

(1 + ‖η̂‖2)2
+ op

(
‖η̂‖2

2

(1 + ‖η̂‖2)2

)
.

As ‖η̂‖2 →∞, we have ‖η̂‖2/(1 + ‖η̂‖2)2 = op(1) and thus 0 ≤ η̂>(T>1DT 1)η̂/(1 + ‖η̂‖2)2 ≤
op(1), but this is a contradiction as the smallest eigenvalue of T>1DT 1 is bounded away
from 0. Thus we conclude that ‖η̂‖2 = Op(1), which proves

√
n-consistency of η̂. Hence

rn{(η̂>,0>r2)>} = op(1), thus we have

L̃(η̂) = A>T 1η̂ −
1

2
η̂>T>1DT 1η̂ + op(1).

Below, we will establish the following the three results:

(R1) T 1η̂ = T 1(T>1DT 1)−1T>1A+ op(1).

(R2)
√
n{vec(Bα+ν̂/

√
n −B∗)} = T 1η̂ +Op(n

−1/2‖η̂‖2
2) = T 1η̂ +Op(n

−1/2).

(R3) For every pair (U ,V ) such that B∗ = UV >, we have

T 1(T>1DT 1)−1T 1 = T (U ,V )(T
>
(U ,V )DT (U ,V ))

+T (U ,V ),

where
T (U ,V ) := [V ⊗ Ip, IJ ⊗U ] . (32)

The main result then follows from an application of Slutsky’s theorem in conjunction
with (R1), (R2), (R3), and the asymptotic normality of A in Lemma E.2.
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Proof of (R1).

Defining H := T 1(T>1DT 1)−1T>1A, we get H>DT 1 = A>T 1(T>1DT 1)−1T 1DT 1 = A>T 1.
By completing the square, it follows that

L̃(η̂) = A>T 1η̂ −
1

2
η̂>T>1DT 1η̂ + op(1)

= H>DT 1η̂ −
1

2
η̂>T>1DT 1η̂ + op(1)

= H>DT 1η̂ −
1

2
η̂>T>1DT 1η̂ −

1

2
H>DH +

1

2
H>DH + op(1)

= −1

2
(T 1η̂ −H)>D(T 1η̂ −H) +

1

2
H>DH + op(1).

(33)

Next, let η̃ = (T>1DT 1)−1T>1A, by (29), we have that

L̃(η̃) = A>T η̃ − 1

2
η̃>(T>1DT 1)η̃ + rn{(η̃>,0>r2)>}. (34)

By Lemma E.2 we have that ‖η̃‖2 = Op(1). Thus (34) and (31) implies

L̃(η̃) = A>T 1η̃ −
1

2
η̃>T>1DT 1η̃ + op(1)

= A>T 1(T>1DT 1)−1T>1A−
1

2
H>DH + op(1)

= A>T 1(T>1DT 1)−1(T>1DT 1)(T>1DT 1)−1T>1A−
1

2
H>DH + op(1)

= H>DT 1(T>1DT 1)−1T>1A−
1

2
H>DH + op(1)

= H>DH − 1

2
H>DH + op(1) =

1

2
H>DH + op(1).

(35)

As α+ (η̃>/
√
n,0>r2)> lives in the constrained parameter space and η̂ is the rank constrained

MLE, we have that L̃(η̂) ≥ L̃(η̃). Combining this with (33) and (35) we get

−1

2
(T 1η̂ − T 1(T>1DT 1)−1T>1A)>D(T 1η̂ − T 1(T>1DT 1)−1T 1A) + op(1) ≥ 0.

Proof of (R2).

Defining ν̂ := (η̂>,0>r2)>, We will now relate ν̂ to
√
n{vec(Bα+ν̂/

√
n −B∗)}. Recall that

α := (vec(Ũ)>, vec([Ṽ
>
, Ir])

>)> and α+ν/
√
n = {(vec(Ũ)>, vec([Ṽ

>
, Ir])

>)+(η>,0>r2)/
√
n}>.

Observe that

√
n(Bα+ν̂/

√
n −B∗) =

√
n
{

(Ũ + vec−1(η̂Ũ )/
√
n)[Ṽ

>
+ vec−1(η̂Ṽ )/

√
n, Ir]− Ũ [Ṽ

>
, Ir]
}

= vec−1(η̂Ũ )[Ṽ
>
, Ir] + Ũ [vec−1(η̂Ṽ ),0r×r] + vec−1(η̂Ũ )[vec−1(η̂Ṽ ),0r×r]/

√
n,

12



where, for example, vec−1(αŨ ) = Ũ and vec−1(αṼ ) = Ṽ
>

. Notice

vec
{

vec−1(η̂Ũ )[Ṽ
>
, Ir] + Ũ [vec−1(η̂Ṽ ),0r×r]

}
= ([Ṽ

>
, Ir]

>⊗Ip)η̂Ũ+(I⊗Ũ )(η̂>
Ṽ
,0>r2)> = T 1η̂,

and thus, with T 1 defined in (19) we have (R2).

Proof of (R3).

Let us consider any pair (U ,V ) where U ∈ Rp×r, V ∈ RJ×r such that B∗ = UV >. Note

that (Ũ , [Ṽ
>
, Ir]

>) is one such possible pair of (U ,V ). Recall T (U ,V ) = [V ⊗ Ip, IJ ⊗U ] as
defined in (32). It is easy to see that col(T (U ,V )) = col(T ), i.e., the column space of T (U ,V )

and T are the same for all (U ,V ) such that B∗ = UV >. Hence, it follows immediately that

T 1(T>1DT 1)−1T 1 = T (T>DT )+T = T (U ,V )(T
>
(U ,V )DT (U ,V ))

+T (U ,V̄ ).

D.2 Proof of Theorem 4

To prove that the asymptotic variance of B̂r∗ is less than that of the unconstrained MLE,
notice that

avar[
√
n{vec(B̄ −B∗)}]− avar[

√
n{vec(B̂r∗ −B∗)}]

= D−1
∗ − T 1(T>1D∗T 1)−1T 1

= D−1/2
∗ {IpJ −D1/2

∗ T 1(T>1D∗T 1)−1T 1D
1/2
∗ }D−1/2

∗ .

Then, since IpJ −D1/2
∗ T 1(T

>
1D∗T 1)

−1T 1D
1/2
∗ is the projection onto the orthogonal com-

plement of the column space of D1/2
∗ T 1, it is positive semidefinite. Thus avar[

√
n{vec(B̂ −

B∗)}]− avar[
√
n{vec(B̂r∗ −B∗)}] is positive semidefinite. The conclusion follows from the

fact that for any positive semidefinite matrix Q, E>QE � 0 for matrix of basis vectors in
RpJ , E ∈ RJ×pJ .

E Auxiliary lemmas

In this section, we prove two lemmas used in the proof of Theorem 4.

Lemma E.1. Recall R(j) and b(j)(·) defined in (16) and (20), respectively. Under assumptions
of Theorem 4, we have

logR(j)

(
s, b(j)(α+ ν)

)
− logR(j)

(
s, b(j)(α)

)
(36)

= x̄(j)(s)
>γ(j)(α,ν) +

1

2
γ(j)(α,ν)>F(j)(s)γ(j)(α,ν) + r(j)(γ(j)(α,ν), s),

where

γ(j)(α,ν) := b(j)(α+ ν)− b(j)(α) = (ν>
Ṽ (j)
⊗ Ip)αŨ + (α>

Ṽ (j)
⊗ Ip)νŨ + (ν>

Ṽ (j)
⊗ Ip)νŨ .
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Furthermore,

rn(ν) = Op

(
‖ν‖2

2√
n

+
‖ν‖4

2

n
+
‖ν‖3

2√
n

[
1 +

(
‖ν‖2√
n

)3 ])
, (37)

where rn(·) is defined in (25).

Proof. Recall that for every β ∈ Rp,

R(j)(s,β) =

n(j)∑
i=1

1(y(j)i ≥ s) exp
(
x>(j)iβ

)
.

The main expansion in (36) follows directly from differentiation and a Taylor series expansion.
We will now prove (37).

Lemma A2 of Hjort and Pollard (2011) allows us an expansion of logR(j)

(
s, b(j)(α +

ν)
)

= logR(j)

(
s, b(j)(α) + γ(j)(α,ν)

)
around logR(j)

(
s, b(j)(α)

)
. For each j ∈ [J ], using

wi = 1(y(j)i ≥ s) exp(x>(j)ib(j)(α)), ai = x>(j)iγ(j)(α,ν), and t = 1 in Lemma A2 of Hjort and

Pollard (2011), for all j ∈ [J ], we get (36) where

|r(j)(γ(j)(α,ν), s)| ≤ 4

3
max
i≤n(j)

|(x(j)i − x̄(j)(s))
>γ(j)(α,ν)|3

≤ 4

3
(2K)3‖γ(j)(α,ν)‖3

2

≤ 4

3
J(2K)3(2‖α‖3

2‖ν‖3
2 + ‖ν‖6

2),

where K is the absolute bound on the predictors and the last inequality follows by an
application of Cauchy-Schwarz inequality on (23). Thus

J∑
j=1

n(j)∑
i=1

∫ L

0

r(j)

(
γ(j)(α,ν/

√
n), s

)
dN(j)i(s)

≤ 4

3
J(2K)3

(
2‖α‖2

‖ν‖3
2

n3/2
+
‖ν‖6

2

n3

) J∑
j=1

n(j)∑
i=1

dN(j)i(s)

≤ 4

3
J(2K)3

(
2‖α‖2

‖ν‖3
2

n1/2
+
‖ν‖6

2

n2

)
= Op

(
‖ν‖3

2

n1/2

(
1 +

[
‖ν‖2√
n

]3 ))
.

In Lemma E.2, we show thatA = (a>(1),a
>
(2), · · · ,a>(J))

> = Op(1) andD(j) = Op(1). Thus (37)
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follows by observing

n−1/2

J∑
j=1

a>(j)(ν
>
Ṽ (j)
⊗ Ip)νŨ = Op(n

−1/2‖ν‖2
2),

1

2n

J∑
j=1

(
(ν>
Ṽ (j)
⊗ Ip)νŨ

)>
D(j)

(
(ν>
Ṽ (j)
⊗ Ip)νŨ

)
= Op(n

−1‖ν‖4
2),

1√
n

J∑
j=1

(
(ν>
Ṽ (j)
⊗ Ip)νŨ

)>
D(j)

(
(ν>
Ṽ (j)
⊗ Ip)αŨ + (α>

Ṽ (j)
⊗ Ip)νŨ

)
= Op(n

−1/2‖ν‖3
2).

Lemma E.2. Under assumptions (A2) – (A7),

D(j)
p→ κ(j)D∗(j) and A

d→ N(0,D∗),

where A and D are defined in (27) and (28), respectively, and D∗(j) :=
∫ L

0
D∗(j)(s)dH(j)(s),

D∗ := BlockDiag{κ(j)D∗(j)}Jj=1, with κ(j) is defined in (A5), and D∗(j) is the population
information matrix for the jth population (when analyzed independently of the other J − 1

populations), i.e., b̃(j), the unconstrained MLE for b∗(j), has the following property

√
n(j)(b̃(j) − b∗(j))

d→ N
(
0,D−1

∗(j)
)
.

Proof. Recall thatA = [a>(1),a
>
(2), · · · ,a>(J)]

>, where a(j) = n−1/2
∑n(j)

i=1

∫ L
0

(x(j)i−x̄(j)(s))dN(j)i(s) ∈
Rp, see (24). By assumption (A7) and the proof of (i) in Theorem 6.1 of Hjort and Pol-

lard (2011), we have that nD(j)/n(j)
p→ D∗(j). Define C(j) := {n/n(j)}1/2a(j). Then by

proof of Theorem 6.1 of Hjort and Pollard (2011) (see (6.8)–(6.10)), C(j)
d→ N(0,D∗(j)),

thus a(j)
d→ N(0, κ(j)D∗(j)), by Slutsky’s theorem. Furthermore, as the J populations are

independent by (A6), we have that cor(a(j),a(j′)) = 0, from which the result follows.

F Additional simulation studies

F.1 Weighted partial likelihood estimator

At the suggestion of a referee, we considered an alternative estimator based on a sample-size
weighted partial log-likelihood. In particular, we also considered the estimator

arg min
B∈Cr∩As

{
−LW(B) + µ‖B‖2

F

}
(38)

where Cr, As, and µ are as defined in the main manuscript, and

LW(B) =
J∑
j=1

1

n(j)

n(j)∑
i=1

δ(j)i

x>(j)ib(j) − log
{ ∑
k∈R(j)i

exp(x>(j)ib(j))
}
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Figure 1: Comparison of (3) versus (38) for estimating the entire coefficient matrix B∗ under
the data generating model described in Section 5.1 of the main manuscript.

is the weighted partial log-likelihood. The estimator (38), in contrast to (3), scales each
populations’ contribution to the log-likelihood by its sample size so that each population
contributes to the partial log-likelihood in an approximately equivalent manner. In this
section, we explore how (38), which we call LR-Cox-Weighted, compares to (3) under the
same data generating models considered in Section 5 of the main manuscript.

Results are displayed in Figures 1 and 2. In Figure 1, we see that (38) performs substan-
tially worse than (3) in all three metrics. As rank(B∗) increases, (38) begins to perform worse
than Convex-Approx (not included in Figure 1, but can be seen in the main manuscript).
In Figure 2, we compare model errors for the coefficient vectors b∗(J−2), b∗(J−1), and b∗(J)

which correspond to populations with sample sizes 100, 200, and 300, respectively. In Figure
2, we see that sample sizes tend to affect errors more substantially for the estimator (38)
than they do for (3). For example, the model error of (3) in population (J − 2) is more than
double that in population J . This is not the case for (38): errors are nearly equivalent across
all populations. However, this is a moot point since in each population, (3) significantly
outperforms (38).

F.2 Sensitivity to the choice of rank

In both our simulation studies and real data application, the rank parameter, r, along with
the number of predictors to include in the model, s, were both chosen by cross-validation.
A referee suggested we examine consider how (3) performs if one overspecifies the rank and
tunes only s. We did exactly this under the same simulation settings as those in the top panel
of Figure 1 of the main manuscript. Specifically, in Figure 3 we display results for our method
with (r, s) chosen via a validation set (LR-Cox-CV); and our method with s chosen using
the validation set and r ∈ {1, 2, 3, 5, 7} fixed (LR-Cox-1, LR-Cox-2, LR-Cox-3, LR-Cox-5,
LR-Cox-7, respectively). Interestingly, we see that the tuned version of our method tends to
perform similarly to the version of our method with correctly specified rank. It is notable
that the version of our method with r = 7 – which is overspecified in every setting considered
– does not perform much worse than our method with r chosen to minimize the validation
likelihood. This would suggest that if one has a reasonable sense of the rank of B∗, slightly

16



0

1

2

3

4

1 2 3 4 5 6
rank(B*)

M
od

el
 e

rr
or

n(J) = 300

0

1

2

3

4

1 2 3 4 5 6
rank(B*)

M
od

el
 e

rr
or

n(J−1) = 200

0

1

2

3

4

1 2 3 4 5 6
rank(B*)

M
od

el
 e

rr
or

n(J−2) = 100

10

20

30

40

1 2 3 4 5 6
rank(β)

M
od

el
 e

rr
or

Method LR−Cox LR−Cox−Weighted

Figure 2: Comparison of (3) versus (38) for estimating estimating (left) b∗(J), (center) b∗(J−1),
and (right) b∗(J−2) under the data generating model described in Section 5.1 of the main

manuscript. For b∗(J), model error is defined as ‖Σ1/2(b∗(J)− b̂(J))‖2
2, and similarly for b∗(J−1)

and b∗(J−2)

overspecifying r and tuning only s may be a reasonable approach if computing time is an
issue.

F.3 Alternative data generating models

In this subsection, we perform additional simulation studies to analyze the performance of
our method when there are varying degrees of cancer-specific and shared factors. In each
of the studies, we generate data from a model in which some factors are relevant to only a
subset of populations (e.g., cancer types). Throughout this section, for a set S ⊂ [p], we use
CS,· (resp. cS) to denote to the submatrix (resp. subvector) of C (resp. c) consisting only of
the rows (resp. elements) indexed by S. In each of the following models, Model A–C, we set
r∗ = 6. As in the main paper and in the earlier simulations considered in this Web Appendix,
for each of the model, we simulate one hundred independent replications, we generate survival
times under the Cox proportional hazards models for J = 12 distinct populations. In each
setting, we generate n(1) = n(4) = n(7) = n(10) = 100, n(2) = n(5) = n(8) = n(11) = 200, and
n(3) = n(6) = n(9) = n(12) = 300 independent failure times for each population. Here, we fix
µ = 1 and ρ0 = 50 for our method, and use all other methods as they are described in the
main manuscript.

The first model we consider is Model A.

– Model A (Partially shared factors, distinct predictors): We partition the J = 12
populations into two groups of size J−q and q for q ∈ {1, . . . , 5}. We randomly select 20
of the p predictors to be relevant: 10 predictors are relevant for the first group and second
group, respectively, and these sets are mutually exclusive. Let these sets of predictors
be denoted S1 and S2. Then, we set (b∗(1), . . . , b∗(J−q))S1,· = {

√
(J − q)/2} · U 1V

>
1

where U 1 ∈ R10×(r∗−1) has iid entries from Uniform(1, 2) and V 1 ∈ R(J−q)×(r∗−1) is a
randomly generated semiorthogonal matrix such that V >1 V 1 = Ir∗−1. We set all other
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Figure 3: Model error, concordance, and Brier score for our method with (r, s) chosen via
a validation set (LR-Cox-CV); and our method with s chosen using the validation set and
r ∈ {1, 2, 3, 5, 7} fixed (LR-Cox-1, LR-Cox-2, LR-Cox-3, LR-Cox-5, LR-Cox-7, respectively).

entries of (b∗(1), . . . , b∗(J−q)) equal to zero. Separately, we set (b∗(J−q+1), . . . , b∗(12))S2,· =

(
√
q/2) ·U 2V

>
2 where U 2 ∈ R10×1 has iid entries from Uniform(1, 2) and V 2 ∈ Rq×1 is

uniformly distributed on the unit sphere. All other entries of (b∗(J−q+1), . . . , b∗(12)) are
set equal to zero. The matrices U 1 and U 2 are generated entirely independently, as are
V 1 and V 2.

Under Model A, J − q populations share r∗ − 1 common factors and q populations share one
common factor, but no factors are shared between the two groups. Also, the factors for each
of the two groups depend on entirely distinct sets of proteins. We consider q ∈ {1, . . . , 5}
with p = 500 and p ∈ {100, 200, . . . , 500} with q = 3.

We present results for 100 independent replications under Model A in Figures 4 and 5.
In Figure 4 we see that with p varying and q = 3, and with q varying and p = 500, our
method substantially outperforms competitors in terms of model error, concordance, and
Brier score across the J populations. In Figure 5, we examine how each method estimates
individual columns of B∗, focusing on b∗(J), b∗(J−1), and b∗(J−2). We see that even though
these populations share only a single factor with one another, our method outperforms all of
the competing methods.

Next, we consider another data generating model, Model B.

– Model B (Partially shared factors, partially shared predictors): We partition the
J = 12 populations into two groups of size eight and four. We randomly select 15 of
the p predictors to be relevant. Then, we randomly allocate these 15 predictors into
two sets of ten elements each, S1 and S2, such that cardinality of their intersection is
five. With q ∈ {1, . . . , 5}, we set (b∗(1), . . . , b∗(8))S1,· = (

√
(r∗ − q)/2) · U 1V

>
1 where

U 1 ∈ R10×(r∗−q) and V 1 ∈ R8×(r∗−q) in the same manner as in Model A. All other
entries of (b∗(1), . . . , b∗(8)) are set to zero. Separately, we set (b∗(9), . . . , b∗(12))S2,· =

(
√
q/2) ·U 2V

>
2 where U 2 ∈ R10×q and V 2 ∈ R4×q are generated as in Model A. The

matrices U 1 and U 2 are generated entirely independently, as are V 1 and V 2.
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Figure 4: Average (plus/minus two standard errors) model error, concordance, and Brier score
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under Model A.
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Figure 5: Average model error (plus/minus two standard errors) for (left) b∗(J), (center)
b∗(J−1), and (right) b∗(J−2) with p ∈ {100, 200, . . . , 500} and q = 3 under Model A. For b∗(J),

model error is defined as ‖Σ1/2(b∗(J) − b̂(J))‖2
2, and similarly for b∗(J−1) and b∗(J−2).
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Figure 6: Average (plus/minus two standard errors) model error, concordance, and Brier score
with (top row) (p, q) ∈ {100, 200, . . . , 500}×{3} and (bottom row) (p, q) ∈ {500}×{1, . . . , 5}
under Model B.

Under Model B, eight populations share r∗− q common factors and four populations share
q common factors, but no factors are shared between the two groups. Important predictors
are partially shared, but each of the two groups of populations have five important predictors
which are irrelevant for the other group.

Results based on 100 independent replications are displayed in Figures 6 and 7. In
Figure 6, we see that LR-Cox outperforms all competitors in all scenarios considered. When
examining the results in Figure 7, we see that Sep-Lasso performs nearly as well as LR-Cox
for estimating the Jth population’s regression coefficients (in terms of model error), but for
the smaller sample size populations (e.g., the (J − 1)th and (J − 2)th) our method more
substantially outperforms Sep-Lasso.

Finally, we consider Model C.

– Model C (Distinct factors, partially shared predictors): We partition the J = 12
populations into two groups of size J − t and t for t ∈ {0, 1, . . . , 4}. We randomly
construct sets Sl for l ∈ {1, . . . , t + 1} so that S1 consists of ten randomly chosen
elements of [p], and Sl for l > 1 consists of five randomly chosen elements of S1

and five randomly chosen elements of [p] \ S1. Then, we set (b∗(1), . . . , b∗(J−t))S1,· =

(
√

(J − t)/2) ·U 1V
>
1 where U 1 ∈ R10×(r∗−t) and V 1 ∈ R(J−t)×(r∗−t) in the same manner

as in Model A. All other entries of (b∗(1), . . . , b∗(J−t)) are set to zero. Finally, letting

ľ = l− (J − t+ 2), for l ∈ {J − t+ 1, . . . , J}, we set b∗(l)Sľ to have entries which are iid
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Figure 7: Average (plus/minus two standard errors) model error for (left) b∗(J), (center)
b∗(J−1), and (right) b∗(J−2) with p ∈ {100, 200, . . . , 500} and q = 3 under Model B. For b∗(J),

model error is defined as ‖Σ1/2(b∗(J) − b̂(J))‖2
2, and similarly for b∗(J−1) and b∗(J−2).

Uniform{[−2
√

2,−
√

2] ∪ [
√

2, 2
√

2]}. All other entries of the b∗(l) are set to zero.

Model C is essentially the worst case scenario for our method. In particular, t populations do
not share any factors with the other J − 1 populations. Moreover, each of these t populations’
factors depend on a partially distinct set of predictors.

We display results for 100 independent replications under Model C in Figures 8 and
9. In Figure 8, we see that when t is relatively small, our method outperforms the com-
petitors. When t is larger (e.g., t ≥ 3), we see that LR-Cox can be outperformed by
Sep-Lasso, Proj-Sep-Lasso, and Convex-Approx. In terms of estimating the population-
specific regression coefficients, we see that LR-Cox is significantly worse than Sep-Lasso

and Proj-Sep-Lasso in both populations with n(j) ≤ 200. This is not surprising given that
these populations do not have any factors in common with the other J − 1 populations, so
our method may impose unhelpful bias relative to the methods which fit a model for each
population separately. In these extreme cases, it may be helpful to also tune µ, since evidently
both Sep-Lasso and Proj-Sep-Lasso benefit from shrinkage.

F.4 Additional performance metrics

In this subsection, we provide additional results from the simulation studies detailed in
Section 5 of the main manuscript. Specifically, in Figure 10, we display results using mean
squared error, ‖B̂ −B∗‖2

F/(pJ), as a performance metric for each of the six methods under
the different scenarios represented by each row of Figure 1 of the main manuscript. In Figure
10 we see that with p fixed, the relative performances in terms of mean squared error mostly
agree with those using model error as the performance metric. The main difference comes
in the right-most panel of Figure 10, where mean squared error decreases as p increases.
This is because model error (as we define it), ‖Σ1/2(B̂ − B∗)‖2

F , does not adjust for the

dimensionality p as does mean squared error ‖B̂ −B∗‖2
F/(pJ).
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Figure 8: Average (plus/minus two standard errors) model error, concordance, and Brier score
with (top row) (p, t) ∈ {100, 200, . . . , 500}×{3} and (bottom row) (p, t) ∈ {500}×{0, . . . , 4}
under Model C.
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Figure 9: Average (plus/minus two standard errors) model error for (left) b∗(J), (center)
b∗(J−1), and (right) b∗(J−2) with p ∈ {100, 200, . . . , 500} and t = 3 under Model C. For b∗(J),

model error is defined as ‖Σ1/2(b∗(J) − b̂(J))‖2
2, and similarly for b∗(J−1) and b∗(J−2).
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Figure 10: Average (plus/minus two standard errors) mean squared error ‖B∗ − B̂‖2
F/(pJ)

with (left) p = 250 and τ = 0.35; (center) p = 250 and r∗ = 3; and (right) r∗ = 3 and τ = 0.35
under the data generating model from Section 5.1 of the main manuscript.

G Additional real data analysis results

In this section, we perform additional analyses to assess whether our method leads to improved
estimation accuracy on each of the five most rare cancer types analyzed in Section 6 of the
main manuscript. These are PAAD, ESCA, LIHC, CESC, and GBM, whose sample sizes are
105, 126, 184, 171, and 205, respectively.

For each of the cancer types of interest, we performed leave-one-out cross-validation.
Specifically, for each i ∈ [n(j)] separately, we fit the model using all the data (from all cancer
types) except the ith subject from the jth type. Tuning parameters were chosen by five-fold
cross-validation on the training data. Then, with the fitted model, we obtained an estimate
of x>(j)ib∗(j), which we call φ̂(j)i. Once we have done this for each of the n(j) subjects, we

compute (a) the concordance between the estimated linear predictors {φ̂(j)1, . . . , φ̂(j)n(j)
} and

the true event times in the jth dataset; and (b) the linear predictor score, which we define as

−2

n(j)∑
i=1

δ(j)i log

 exp(φ̂(j)i)∑
k∈R(j)i

exp(φ̂(j)k)

 ,

e.g., see Dai and Breheny (2019). To be clear, each φ̂(j)i is computed based on a model fit
to data which excluded the ith subject with the jth cancer type. Of course, lower linear
predictor score would suggest a better model fit.

We did this using our method, LR-Cox, and the three competitors: Sep-Ridge, Sep-Lasso,
and Sep-En. Note that the three competitors do not use any information from the other
cancer types when fitting the model. Results are displayed in Table 1. Here, we see that
LR-Cox outperforms the three competitors in terms of concordance in four of the five datasets.
However in one dataset, ESCA, none of the methods have concordance above 0.5, which
corresponds to randomly guessing the order of the linear predictors. Similarly, LR-Cox

outperforms competitors in the same four of five datasets in terms of linear predictor score.
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Table 1: Leave-one-out cross-validated concordance and linear predictor scores for the four
considered methods across the five considered datasets. Bold cells are those with highest
concordance or lowest linear predictor score.

Concordance Linear predictor score
PAAD ESCA LIHC CESC GBM PAAD ESCA LIHC CESC GBM

LR-Cox 0.675 0.405 0.689 0.704 0.635 206.148 268.592 496.469 432.391 560.993
Sep-Ridge 0.560 0.492 0.574 0.613 0.609 211.489 264.459 510.781 444.691 564.757
Sep-Lasso 0.575 0.500 0.586 0.461 0.571 219.049 263.538 507.540 455.385 569.579

Sep-En 0.601 0.500 0.556 0.616 0.601 210.677 263.260 509.164 440.337 564.893

Taken together, these results provide strong evidence that our method can yield positive
findings, even on the rarest cancer types included in our real data analysis.

H Comparison to sparse reduced rank regression

The method of Chen and Huang (2012) assumes the data {(yi,xi)}ni=1 consist of a q-
dimensional (continuous) response variable yi and p-dimensional predictor xi for i ∈ [n]. The
goal is to estimate β∗ from the model which assumes yi is a realization of the random vector

β>∗ xi + εi, εi ∈ Rq, E(εi) = 0, Cov(εi) ∈ Sq+,

for i ∈ [n] and assumes that β∗ = UC for C ∈ Rr∗×q and U ∈ Rp×r∗ where r∗ < min(p, q).
Sparse reduced-rank regression, as proposed in Chen and Huang (2012), assumes U is
row-wise sparse. Letting X = (x1, . . . ,xn)> ∈ Rn×p, Y = (y1, . . . ,yn)> ∈ Rn×q, and
‖U‖1,2 =

∑p
j=1 ‖U j,·‖2, the estimator of (U ,C) proposed by Chen and Huang (2012) is

arg min
U∈Rp×r,C∈Rr×q

{
‖Y −XUC‖2

F + γ‖U‖1,2

}
subject to CC> = Ir,

or equivalently, letting C = (c1, . . . , cq) ∈ Rr×q and Y ·,j ∈ Rn denote the jth column of Y ,

arg min
U∈Rp×r,C∈Rr×q

{
q∑
j=1

‖Y ·,j −XUcj‖2
2 + γ‖U‖1,2

}
subject to CC> = Ir, (39)

for which they develop an efficient optimization algorithm. Here, both r ∈ {1, 2, 3, . . . } and
γ > 0 are user-specified tuning parameters.

Now, let us consider applying this approach to the regression problem with J distinct
populations. Assuming the jth population has n(j) subjects, each with univariate and
continuous response y(j)i for i ∈ [n(j)] and p-dimensional predictor x(j)i, the analog of their
estimator would be

arg min
U∈Rp×r,C∈Rr×q

{
J∑
j=1

‖y(j) −X(j)Ucj‖2
2 + λ‖U‖1,2

}
, CC> = Ir, (40)

where y(j) = (y(j)1, . . . , y(j)n(j)
)> and X(j) = (x(j)1, . . . ,x(j)n(j)

)> ∈ Rn(j)×p for j ∈ [J ]. The
estimator in (40) can be characterized as (39) only if X(j) = X(j′) = X for all j 6= j′. The
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optimization problem in (40) is especially challenging relative to (39) because each component
of the residual sum-of-squares depends on a distinct design matrix X(j), so the computational
approach developed in Chen and Huang (2012) cannot be applied directly. The same basic
issue arises in applying the method of She (2017) in this context. Moreover, neither of their
theoretical results apply to (40) in general.

Extending these approaches to handle J populations with censored survival outcomes leads
to further complication and would also require a new algorithm and theoretical framework.

I Details on low rank decomposition of B∗

In Section 6.2 of the main manuscript, we claim that when J = 18, s = 20, and r = 6, there
are 192 parameters to be estimated. This follows from the fact that for a rank r matrix
A ∈ Ra×b, the decomposition A = UV >, where U ∈ Ra×r and V ∈ Rb×r, is nonunique. To
make such a decomposition identifiable, it suffices to define

V =

(
V 0

Ir

)
where V 0 ∈ R(b−r)×r is unconstrained. This way, one need only estimate U and V 0 so that
there are ar + (b− r)r = ar + br− r2 parameters needed to define A. A more rigorous proof
of this result—that an a× b matrix with rank r is defined by ar + br− r2 parameters—relies
on the fact that such a matrix has r nonzero singular values, and r distinct pairs of singular
vectors (which are subject to orthogonality and unit length constraints in Ra and Rb). For
example, see Section 2.3 of Velu and Reinsel (2013).

In our context, since J = 18, r = 6, and s = 20, this means we need only estimate the
parameters of a rank r matrix BS,· ∈ Rs×J , the submatrix of B whose rows are nonzero. By
the logic above, this means we need only estimate sr + Jr − r2 = 20 · 6 + 18 · 6− 62 = 192
parameters.

As a simple example, take B, the 6× 5 matrix with rank 3 given by

B =


−1.19 −0.33 −1.45 −0.50 −1.00
−0.26 −0.36 −2.88 0.26 −1.93
−2.37 0.33 0.73 −0.86 −0.47

1.94 0.74 1.42 1.30 0.55
−2.73 1.13 0.20 0.02 −2.21
−1.90 0.15 0.51 −0.80 −0.27

 .

Based on the discussion above, we can express this matrix in terms of U ∈ R5×3 and
V 0 ∈ R2×3 as B = UV > = U [V >0 , Ir] = [UV >0 ,U ], from which is it easy to see U = B∗[,3:5],
and V 0 = U+B∗[,1:2] so that

U =


−1.45 −0.50 −1.00
−2.88 0.26 −1.93

0.73 −0.86 −0.47
1.42 1.30 0.55
0.20 0.02 −2.21
0.51 −0.80 −0.27

 , V 0 =

 −0.57 0.46
1.61 0.26
1.20 −0.47

 .
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