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1 Identifiability

In Section 3.1 of the main text, we discussed the case of non-identifiablity caused by the
multinomial logistic link, and described the sum-to-zero constraint that alleviates this. There
is another, rare, case of possible non-identifiability of γ(k) which we describe here. If there
exists some k ∈ [K] for which there exists j ∈ Ck for which |gk(j)|> 1 and there exists
l, l′ ∈ gk(j) with l 6= l′ and αl = αl′ and βl = βl′ , then γ(k) is not identifiable, as the l and
l′ columns of γ(k) can be swapped with no changes to the probabilities.

2 Technical details

2.1 Gradient derivations

In this section we derive the gradients required in Algorithm 1. We begin by finding the
gradient of β 7→ F0,0(αt,β,γt), which we denote by ∇βF0,0(αt, ·,γt). We first focus
on the partial derivative of β 7→ L(k)i(α

t,β,γt(k)) with respect to βa,b, which we denote

{∂L(k)i/∂βa,b}(αt, ·,γt). Recall

L(k)i(α
t,β,γt(k)) =

∑
j∈Ck

1(y(k)i = j) log

(∑
l∈gk(j) exp(αtl + x>(k)iβl + z>(k)iγ

t
(k)l)∑

v∈C exp(αtv + x>(k)iβv + z>(k)iγ
t
(k)v)

)
,
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and thus

∂L(k)i

∂βa,b
(αt,β,γt) =

∑
j∈Ck

{
1(y(k)i = j)

( ∑
v∈C exp(αtv + x>(k)iβv + z>(k)iγ

t
(k)v)∑

l∈gk(j) exp(αtl + x>(k)iβl + z>(k)iγ
t
(k)l)

)
(∑

l∈gk(j) 1(l = b)x(k)i,aexp(αtl + x>(k)iβl + z>(k)iγ
t
(k)l)∑

v∈C exp(αtv + x>(k)iβv + z>(k)iγ
t
(k)v)

−
∑

l∈gk(j) exp(αtl + x>(k)iβl + z>(k)iγ
t
(k)l)∑

v∈C exp(αtv + x>(k)iβv + z>(k)iγ
t
(k)v)∑

v∈C 1(v = b)x(k)i,aexp(αtv + x>(k)iβv + z>(k)iγ
t
(k)v)∑

v∈C exp(αtv + x>(k)iβv + z>(k)iγ
t
(k)v)

)}

=

∑
l∈gk(y(k)i)

1(l = b)x(k)i,aexp(αtl + x>(k)iβl + z>(k)iγ
t
(k)l)∑

l∈gk(y(k)i)
exp(αtl + x>(k)iβl + z>(k)iγ

t
(k)l)

−
∑

v∈C 1(v = b)x(k)i,aexp(αtv + x>(k)iβv + z>(k)iγ
t
(k)v)∑

v∈C exp(αtv + x>(k)iβv + z>(k)iγ
t
(k)v)

= x(k)i,a

{
[C̃(k)(α

t,β,γt(k))]i,b − [P̃ (k)(α
t,β,γt(k))]i,b

}
where P̃ (k) and C̃(k) are as in (5) and (6) from the main text. Hence

∂F0,0

∂βa,b
(αt,β,γt) = − 1

N

K∑
k=1

nk∑
i=1

∂L(k)i

∂βa,b
(αt,β,γt)

= − 1

N

K∑
k=1

nk∑
i=1

x(k)i,a

{
[C̃(k)(α

t,β,γt(k))]i,b − [P̃ (k)(α
t,β,γt(k))]i,b

}
=

1

N

K∑
k=1

X>(k):,a

{
[P̃ (k)(α

t,β,γt(k))]:,b − [C̃(k)(α
t,β,γt(k))]:,b

}
.

From this, it is clear that

∇βF0,0(αt,β,γt) =
1

N

K∑
k=1

X>(k)

{
P̃ (k)(α

t,β,γt(k))− C̃(k)(α
t,β,γt(k))

}
.

Applying identical arguments for γ and α, we also get

∇γ(k)
F0,0(αt,βt+1,γ) =

1

N
Z>(k)

{
P̃ (k)(α

t,βt+1,γ(k))− C̃(k)(α
t,βt+1,γ(k))

}
, k ∈ [K]

∇αF0,0(α,βt+1,γt+1) =
1

N

K∑
k=1

{
P̃ (k)(α,β

t+1,γt+1
(k) )− C̃(k)(α,β

t+1,γt+1
(k) )
}>

1nk
.
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2.2 Lipschitz continuity of the gradient

When constructing a majorizing function for the β update in (4) from the main text, we
relied on the Lipschitz continuity/constant of ∇βF0,0(αt, ·,γt), thus we now prove this.
Specifically, we want to show there exists Lβ which satisfies that for fixed αt and γt and for
all β′,β′′, ∥∥∇βF0,0(αt,β′,γt)−∇βF0,0(αt,β′′,γt)

∥∥
F
≤ Lβ ‖β′ − β′′‖F . (1)

We use an argument similar to that used by Powers et al. (2018). First we derive Lipschitz
constants LPβ and LCβ such that∣∣∣∣[P̃ (k)(α

t,β′,γt(k))
]
i,l
−
[
P̃ (k)(α

t,β′′,γt(k))
]
i,l

∣∣∣∣ ≤ LPβ ‖β′ − β′′‖F (2)

and ∣∣∣∣[C̃(k)(α
t,β′,γt(k))

]
i,l
−
[
C̃(k)(α

t,β′′,γt(k))
]
i,l

∣∣∣∣ ≤ LCβ ‖β′ − β′′‖F (3)

We obtain these Lipschitz constants by bounding norms of ∇βP̃ (k)i,l and ∇βC̃(k)i,l, where

∇βP̃ (k)i,l is the gradient of the function β 7→ [P̃ (k)(α
t,β,γt(k))]i,l and analogously for

∇βC̃(k)i,l. For sake of brevity, slightly abusing notation, we abbreviate P̃ (k)i,l = [P̃ (k)(α
t,β,γt(k))]i,l

to mean the evaluated value instead of the function itself in this section, except when refer-
ring to gradients or partial derivatives of the function itself. We have that

∂P̃ (k)i,l

∂βa,b
(αt,β,γt(k)) =

1(b = l)x(k)i,aexp(αtl + x>(k)iβl + z>(k)iγ
t
(k)l)∑

v∈C exp(αtv + x>(k)iβv + z>(k)iγ
t
(k)v)

−
exp(αtl + x>(k)iβl + z>(k)iγ

t
(k)l)∑

v∈C exp(αtv + x>(k)iβv + z>(k)iγ
t
(k)v)∑

v∈C 1(v = b)x(k)i,aexp(αtv + x>(k)iβv + z>(k)iγ
t
(k)v)∑

v∈C exp(αtv + x>(k)iβv + z>(k)iγ
t
(k)v)

= x(k)i,a{1(b = l)P̃ (k)i,l − P̃ (k)i,lP̃ (k)i,b}

= x(k)i,a

{
−P̃ (k)i,lP̃ (k)i,b, b 6= l,

P̃ (k)i,l(1− P̃ (k)i,l), b = l.

Thus we have that
∇βP̃ (k)i,l = x(k)iv

i,l>
(k)

where

[vi,l(k)]b =

{
−P̃ (k)i,lP̃ (k)i,b, b 6= l,

P̃ (k)i,l(1− P̃ (k)i,l), b = l.

Because 0 ≤ P̃ (k)i,l ≤ 1 for any l ∈ C, we have that∥∥∥vi,l(k)

∥∥∥
2
≤
∥∥∥vi,l(k)

∥∥∥
1

= P̃ (k)i,l(1− P̃ (k)i,l) +
∑
b6=l

P̃ (k)i,lP̃ (k)i,b = 2P̃ (k)i,l(1− P̃ (k)i,l) ≤
1

2
,
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meaning ∥∥∥∇βP̃ (k)i,l

∥∥∥
F
≤
∥∥x(k)i

∥∥
2

∥∥∥vi,l(k)

∥∥∥
2
≤ 1

2

∥∥x(k)i

∥∥
2

Finally, using the mean value theorem, we can conclude that

LPβ =
1

2

∥∥x(k)i

∥∥
2

satisfies the desired inequality in (2).
We can also find LCβ which satisfies (3) by repeating the same argument. We have that

∂C̃(k)i,l

∂βa,b
(αt,β,γt(k)) =

1{l ∈ gk(y(k)i)}1(b = l)x(k)i,aexp(αl + x>(k)iβl + z>(k)iγ(k)l)∑
v∈gk(y(k)i)

exp(αv + x>(k)iβv + z>(k)iγ(k)v)

−
1{l ∈ gk(y(k)i)}exp(αl + x>(k)iβl + z>(k)iγ(k)l)∑

v∈gk(y(k)i)
exp(αv + x>(k)iβv + z>(k)iγ(k)v)∑

v∈gk(y(k)i)
1(v = b)x(k)i,aexp(αv + x>(k)iβv + z>(k)iγ(k)v)∑

v∈gk(y(k)i)
exp(αv + x>(k)iβv + z>(k)iγ(k)v)

=
1{l ∈ gk(y(k)i)}1(b = l)x(k)i,aexp(αl + x>(k)iβl + z>(k)iγ(k)l)∑

v∈gk(y(k)i)
exp(αv + x>(k)iβv + z>(k)iγ(k)v)

−
1{l ∈ gk(y(k)i)}exp(αl + x>(k)iβl + z>(k)iγ(k)l)∑

v∈gk(y(k)i)
exp(αv + x>(k)iβv + z>(k)iγ(k)v)

1{b ∈ gk(y(k)i)}x(k)i,aexp(αb + x>(k)iβb + z>(k)iγ(k)b)∑
v∈gk(y(k)i)

exp(αv + x>(k)iβv + z>(k)iγ(k)v)

= x(k)i,a{1(b = l)C̃(k)i,l − C̃(k)i,lC̃(k)i,b}

= x(k)i,a

{
−C̃(k)i,lC̃(k)i,b, b 6= l,

C̃(k)i,l(1− C̃(k)i,l), b = l.

Now replacing P̃ (k) with C̃(k) for the rest of the argument used in finding LPβ , we get that

LCβ =
1

2

∥∥x(k)i

∥∥
2

satisfies the desired inequality in (3).
Now we use these results to find Lβ that satisfies (1). For brevity, we abbreviate
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P̃ (k)(β) = P̃ (k)(α
t,β,γt(k)) and C̃(k)(β) = C̃(k)(α

t,β,γt(k)). We have that∥∥∇βF0,0(αt,β′,γt)−∇βF0,0(αt,β′′,γt)
∥∥
F

=

∥∥∥∥∥ 1

N

K∑
k=1

X>(k)

{
P̃ (k)(β

′)− C̃(k)(β
′)
}
− 1

N

K∑
k=1

X>(k)

{
P̃ (k)(β

′′)− C̃(k)(β
′′)
}∥∥∥∥∥

F

≤ 1

N

K∑
k=1

∥∥∥X>(k)

[{
P̃ (k)(β

′)− C̃(k)(β
′)
}
−
{
P̃ (k)(β

′′)− C̃(k)(β
′′)
}]∥∥∥

F

≤ 1

N

K∑
k=1

∥∥X(k)

∥∥
F

{∥∥∥P̃ (k)(β
′)− P̃ (k)(β

′′)
∥∥∥
F

+
∥∥∥C̃(k)(β

′)− C̃(k)(β
′′)
∥∥∥
F

}

≤ 1

N

K∑
k=1

∥∥X(k)

∥∥
F


√√√√ nk∑

i=1

∑
l∈C

([P̃ (k)(β
′)]i,l − [P̃ (k)(β

′′)]i,l)2 +

√√√√ nk∑
i=1

∑
l∈C

([C̃(k)(β
′)]i,l − [C̃(k)(β

′′)]i,l)2


≤ 1

N

K∑
k=1

∥∥X(k)

∥∥
F


√√√√ nk∑

i=1

∑
l∈C

(
1

2

∥∥x(k)i

∥∥
2
‖β′ − β′′‖F

)2

+

√√√√ nk∑
i=1

∑
l∈C

(
1

2

∥∥x(k)i

∥∥
2
‖β′ − β′′‖F

)2


=

1

N

K∑
k=1

∥∥X(k)

∥∥
F
‖β′ − β′′‖F

√√√√ nk∑
i=1

∑
l∈C

∥∥x(k)i

∥∥2

2

=

(√
|C|
N

K∑
k=1

∥∥X(k)

∥∥2

F

)
‖β′ − β′′‖F .

Therefore

Lβ =

√
|C|
N

K∑
k=1

∥∥X(k)

∥∥2

F

satisfies the desired inequality in (1), and in conclusion, (4) from the main text is satisfied
for sβ ≤ 1

Lβ
= N/{

√
|C|
∑K

k=1‖X(k)‖2
F}.

Similarly, repeating the same argument, one could show that

Lγ(k)
=

√
|C|
N

∥∥Z(k)

∥∥2

F

satisfies∥∥∥∇γ(k)
F0,0(αt,βt+1,γt(1), . . . ,γ

′
(k), . . . ,γ

t
(K))−∇γ(k)

F0,0(αt,βt+1,γt(1), . . . ,γ
′′
(k), . . . ,γ

t
(K))

∥∥∥
F

≤ Lγ(k)

∥∥γ ′(k) − γ ′′(k)

∥∥
F

where ∇γ(k)
F0,0(αt,βt+1,γt(1), . . . , ·, . . . ,γt(K)) denotes the gradient of

γ(k) 7→ F0,0(αt,βt+1,γt(1), . . . ,γ(k), . . . ,γ
t
(K))
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and Lα =
√
|C| satisfies∥∥∇αF0,0(α′,βt+1,γt+1)−∇αF0,0(α′′,βt+1,γt+1)

∥∥
F
≤ Lα ‖α′ −α′′‖F

where ∇αF0,0(·,βt+1,γt+1) denotes the gradient of α 7→ F0,0(α,βt+1,γt+1). Thus, for

sγ(k)
≤ 1

Lγ(k)

= N/{
√
|C|‖Z(k)‖2

F} we have that

F0,0(αt,βt+1,γt(1), . . . ,γ(k), . . . ,γ
t
(K))

≤ F0,0(αt,βt+1,γt) + tr
{
∇γ(k)

F0,0(αt,βt+1,γt)>(γ(k) − γt(k))
}

+
1

2sγ(k)

‖γ(k) − γt(k)‖2
F

and for sα ≤ 1
Lα

= 1/
√
|C|, we have that

F0,0(α,βt+1,γt+1) ≤ F0,0(αt,βt+1,γt+1) + tr
{
∇αF0,0(αt,βt+1,γt+1)>(α−αt)

}
+

1

2sα
‖α−αt‖2

F .

3 Implementation details

3.1 IBMR

In this section, we describe how to select a reasonable set of candidate tuning parameters
for both λ and ρ. We start by motivating our selection of ρ. If β̂ = 0 (e.g., if λ =∞), then,
we know that γ̂(k) is optimal if

1

N
Z>(k){P̃ (k)(α̂,0, γ̂(k))− C̃(k)(α̂,0, γ̂(k))}+ ργ̂(k) = 0.

However, there is no (finite) value of ρ that would lead to γ̂(k) = 0 being optimal. Thus,
for a moment, consider the alternative optimization problem where we have an elastic-net
penalty on γ(k) rather than just a ridge penalty:

arg min
(α,β,γ)∈T

{
−L(α,β,γ) + λ

p∑
m=1

‖βm,·‖2+(1− φ)
ρ

2

K∑
k=1

‖γ(k)‖2
F+φρ

K∑
k=1

‖γ(k)‖1,1

}
.

With φ = 0, this is identical to (3) from the main text. Now if β̂ = 0 (i.e., λ = ∞), then,
we know that γ̂(k) = 0 is optimal if

1

N
Z>(k){P̃ (k)(α̂,0,0)− C̃(k)(α̂,0,0)}+ φρS = 0.

for some S ∈ Rr×|C| with |Sjk|≤ 1 for all (j, k). This equality will hold if

φρ ≥
∥∥∥∥ 1

N
Z>(k){P̃ (k)(α̂,0,0)− C̃(k)(α̂,0,0)}

∥∥∥∥
∞

6



with α̂ being fit with β̂ = 0 and γ̂(k) = 0 fixed.
Since φ = 0 corresponds to the optimization we want to solve, we can set φ to be a small

number (φ = 10−3 by default in our implementation), and use this to get ρmax, the largest
value of ρ we consider in tuning. For this value, γ̂(k) will intuitively be very close to 0, since
the two optimization problems are nearly identical. This gives

ρmax = max
k∈[K]


∥∥∥ 1
N
Z>(k){P̃ (k)(α̂,0,0)− C̃(k)(α̂,0,0)}

∥∥∥
∞

φ

 .

We then consider n rho candidate tuning parameters ρ̄ ∈ [δρρmax, ρmax] (δρ < 1) equally
spaced on the log-scale where δρ = 10−4 and n rho = 5 by default. This procedure is similar
to how glmnet chooses the tuning parameter sequence for ridge regression problems.

For each ρ in our candidate set, we construct a unique set of candidate λ. Let ρ̄ be the
fixed value of ρ coming from the candidate set and let α̂ρ̄ and γ̂ ρ̄(k) denote the optimal values

of α and γ(k) with β̂ = 0 fixed. Considering the optimization with respect to β with α and
γ(k) fixed at α̂ρ̄ and γ̂ ρ̄(k), we see that β̂ = 0 if

1

N

K∑
k=1

X>(k){P̃ (k)(α̂
ρ̄,0, γ̂ ρ̄(k))− C̃(k)(α̂

ρ̄,0, γ̂ ρ̄(k))}+ λS = 0

where S ∈ Rp×|C| with ‖Sj,·‖2≤ 1 for all j ∈ [p]. This equality will hold if

λ ≥ max
j∈[p]


∥∥∥∥∥∥
[

1

N

K∑
k=1

X>(k){P̃ (k)(α̂
ρ̄,0, γ̂ ρ̄(k))− C̃(k)(α̂

ρ̄,0, γ̂ ρ̄(k))}

]
j,·

∥∥∥∥∥∥
2

 = λmax

Therefore, for each ρ̄ in the candidate set, we consider n lambda candidate tuning parameters
λ(ρ̄) ∈ [δλλmax, λmax] equally spaced on the log-scale where δλ = 10−4 and n lambda = 25 by
default.

We choose the best tuning parameter combination by minimizing the negative log-
likelihood on the validation data.

3.2 IBMR-NG, subset, and relabel

For IBMR-NG, we choose tuning parameters in the same way as for IBMR, setting ρ̄ =∞ (i.e.
γ̂ ρ̄(k) = 0).

Regarding our implementation of subset and relabel: as mentioned in the text, while
these models could be fit using glmnet, for consistency in the algorithm and convergence
criterion (which can have a very slight affect on performance), we fit these models using the
our software for IBMR-NG with the inputs as described in Section 5.2 and n lambda = 25 as
with IBMR-NG.
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3.3 Seurat

We follow the “Mapping and annotating query datasets” Seurat vignette to first integrate
the training datasets and then use this integrated reference for prediction on the validation
and test datasets. Note that we use the same normalized gene expression data matrix
(including same genes) as for all other methods, described in Section 4.

However, note that Seurat cannot handle the different resolution labels across training
datasets (which is the primary motivation behind our method). Therefore, we subset the
training data to only the cells which are annotated at the finest resolution (up to renaming),
similarly to as described for the subset method in Section 5.2 of the main text, and then
integrate the subsetted data.

Additionally, while the TransferData function in Seurat provides “scores” per category
for prediction on a new cell, these cannot be interpreted as probabilities since they do
not sum to 1 (or any constant) in general. Therefore, we cannot evaluate the likelihood
function, and thus only report error rates for this method. Moreover, to make “coarse
predictions” (as defined in Section 6.1 of the main text) on the validation dataset (for tuning
parameter selection) and test dataset (for performance evaluation), we use the prediction
from the TransferData function as the “fine prediction”, and define the “coarse prediction”
as the coarse category to which the “fine prediction” belongs to (unlike how we defined a
“coarse prediction” in Section 6.1 of the main text where probabilities per fine category were
available). This then allows us to define the error rate based on the observed labels in the
validation and test datasets.

We choose the tuning parameters n.dim (number of CCA and PCA components used by
this method) and k.anchor (number of nearest neighbors for data integration and predic-
tion) by minimizing the error rate on the validation dataset over the 25 tuning parameter
combinations of n.dim ∈ {10, 20, 30, 40, 50} and k.anchor ∈ {3, 5, 10, 15, 20}, where this
particular choice of values was chosen because the vignette used a value of n.dim = 30 and
k.anchor = 5, but other vignettes (e.g. “Multimodal reference mapping” and “Tips for
integrating large datasets”) vary n.dim to be as large as 50 and k.anchor as large as 20. We
also chose a grid of size 25 to be fair with the other methods we compare to, which all have
at least 25 tuning parameter combinations considered (only IBMR-int has more, at 125).

3.4 SingleR

We follow the tutorial in the “Pseudo-bulk aggregation” section of the “SingleR Book” which
allows us to use single-cell data as training data for use in the SingleR method.

Once again, just like Seurat, SingleR cannot handle the different resolution labels across
training datasets, so we subset the training data to only the cells which are annotated at
the finest resolution (up to renaming), similarly to as described for the subset method in
Section 5.2 of the main text. SingleR provides “scores” per category (which are based on a
summary statistic of correlation of the cell with training data) for prediction on a new cell,
but just like Seurat, these cannot be interpreted as probabilities, and thus the likelihood
function cannot be evaluated, nor can “coarse predictions” be defined as done in Section 6.1
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https://github.com/LTLA/SingleRBook-base/blob/91b03201e01996c2e40f196c7346646281658140/scref.Rmd


of the main text. For this reason, we define “coarse prediction” for SingleR as we did for
Seurat.

We choose the tuning parameters de.n (number of differentially expressed genes used
by this method) and quantile (the quantile to use to summarize distribution of correla-
tion of new cell with training data) by minimizing the error rate on the validation dataset
over the 25 tuning parameter combinations of de.n ∈ {20, 40, 60, 80, 100} and quantile

∈ {0.6, 0.7, 0.8, 0.9, 1}, where this particular choice of values was chosen because the default
value of de.n for 28 labels is de.n = 71, and the default value of quantile is quantile

= 0.8. Once again, also chose a grid of size 25 to be fair with the other methods we compare
to, which all have at least 25 tuning parameter combinations considered (only IBMR-int has
more than 25, at 125).

4 Data processing

4.1 Filtering cells

We removed some cells from datasets with certain labels in order to create binning functions
which treat the labels in hao_2020 as the finest resolution categories. The cell type labels
which we removed from each dataset are listed in Table 1. For blish_2020, haniffa_2021,
tsang_2020, and su_2020 we also removed cells originating from patients with COVID-19
and only kept cells originating from healthy patients.

For all datasets, we also removed low-quality cells based on the percentage of mito-
chondrial reads and number of genes expressed (with nonzero counts) in each cell. Specifi-
cally, let Xc

(k) be the full n̈k × p̈ gene expression count matrix for the kth dataset. Define

s(k)i =
∑p̈

g=1X
c
(k)i,g. Also, let M ⊂ {1, . . . , p̈} be the set of mitochondrial genes (the genes

whose names start with “MT-”). Define the percentage of mitochondrial reads to be

m(k)i = 100 ·
∑
g∈M

Xc
(k)i,g

s(k)i

.

Furthermore, define the number of expressed genes to be e(k)i =
∑p̈

g=1 1(Xc
(k)i,g > 0). Let

I(k) be the set of cells with no more than 5 percent mitochondrial reads and at least 200
genes expressed

I(k) =
{
i : m(k)i < 5

}
∩
{
i : e(k)i > 200

}
and define ṅk = |I(k)| and reassign Xc

(k) = Xc
(k)I(k),· to be the filtered count matrix.

4.2 Data normalization

Let Xc
(k) and s(k)i be defined as in the last section. Then the normalized matrix X(k) is

defined by

X(k)i,g = log

(
104 ·Xc

(k)i,g

s(k)i

+ 1

)
, i ∈ [nk], g ∈ [p], k ∈ [K].
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Dataset Labels Removed labels
1 hao 2020 ASDC, B intermediate, B memory, B naive, CD14

Mono, CD16 Mono, CD4 CTL, CD4 Naive, CD4
TCM, CD4 TEM, CD8 Naive, CD8 TCM, CD8 TEM,
cDC1, cDC2, dnT, Eryth, gdT, HSPC, ILC, MAIT,
NK, NK˙CD56bright, pDC, Plasmablast, Platelet, Treg
Memory, Treg Naive

*Proliferating*

2 tsang 2021 CD4-positive, alpha-beta memory T cell, CD8-positive,
alpha-beta memory T cell, double negative T cell
(DNT), gamma-delta T cell, memory B cell, mucosal
invariant T cell (MAIT), naive B cell, naive CD4+
T cell, naive CD8+ T cell, plasmablast, regulatory T
cell, NK˙CD16hi, NK˙CD56hiCD16lo, classical mono-
cyte, conventional dendritic cell, non-classical mono-
cyte, plasmacytoid dendritic cell, platelet

double-positive T
cell (DPT), gran-
ulocyte, interme-
diate monocyte,
NK˙CD56loCD16lo,
TCRVbeta13.1pos,
TissueResMemT

3 haniffa 2021 B˙cell, CD4, CD8, CD14, CD16, DCs, HSC, MAIT,
NK˙16hi, NK˙56hi, Plasmablast, Platelets, RBC, Treg,
gdT, pDC

*prolif*

4 su 2020 CD16- NK, CD16+ NK, classical monocyte, memory
B, memory CD4, memory CD8, myeloid DC, naive B,
naive CD4, naive CD8, non-classical CD16+ monocyte,
plasmacytoid DC, Treg

intermediate monocyte

5 10x pbmc 5k v3 CD16- NK, CD16+ NK, classical monocyte, DCs, mem-
ory B, memory CD4, memory CD8, naive B, naive CD4,
naive CD8, non-classical CD16+ monocyte, Treg

intermediate monocyte

6 blish 2020 B, CD14 Monocyte, CD16 Monocyte, CD4 T, CD8 T,
DC, gd T, NK, PB, pDC, Platelet, RBC

Granulocyte

7 kotliarov 2020 B, CD4+ memory T, CD4+ naive T/DNT, CD8+
memory T, CD8+ naive T, Monocyte/mDC, NK, Non-
classical monocyte, pDC

Unconv T

8 10x pbmc 10k B, CD16- NK, CD16+ NK, classical monocyte, memory
CD4, memory CD8, naive CD4, naive CD8, Treg

intermediate monocyte

9 10x sorted CD14+ Monocytes, CD19+ B cells, CD34+
Cells, CD4+/CD25+ Regulatory T Cells,
CD4+/CD45RA+/CD25- Naive T cells,
CD4+/CD45RO+ Memory T Cells, CD56+ Nat-
ural Killer Cells, CD8+/CD45RA+ Naive Cytotoxic T
Cells

10 ding 2019 B cell, CD14+ monocyte, CD16+ monocyte, CD4+ T
cell, Cytotoxic T cell, Dendritic cell, Natural killer cell,
Plasmacytoid dendritic cell

Megakaryocyte

Table 1: Description of labels in each dataset and labels which were removed during prepro-
cessing in order to construct binning functions with respect to the labels used by hao_2020.
Label names are given exactly as named by the original data source. Asterisks in the removed
labels column indicate wildcard expressions.

This is the standard log-normalization used in Seurat.
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4.3 Ranking of genes

First, we obtain the intersection of genes available across all datasets. We subset all datasets
to include these intersection genes only. To rank genes for screening purposes we use the
FindVariableFeatures function in Seurat with selection.method = “vst” on the normalized
matrix and rank genes according to the vst.variance.standardized column in descending order
for each dataset. We refer the reader to Stuart et al. (2019) for the details, but briefly, the
mean-variance relationship is estimated by fitting a smooth function to the estimated mean
and estimated variance of each gene, and compares the expected value of the variance for
a gene, given its estimated mean, to the estimated variance of the gene. We then take the
average of ranks across all dataset-patient combinations, and use these ranks to order the
genes and reassign G to be the ordered set of genes. When varying the number of genes p,
we take the first p genes from this ordered list, and reassign X(k) = X(k)·,G1:p .

5 Performance metrics

In the simulation studies, we compared methods using Kullback-Leibler (KL) divergence,
Hellinger distance, and the error rate. In this section, we give explicit forms for each of these
metrics and provide a brief description of why we chose them.

Both KL divergence and Hellinger distance quantify the similarity between two proba-
bility distributions. Specifically, suppose we are given a probability mass function P and
an estimate of the probability mass function P̂ . Then, P (xi) = {π∗1(xi), . . . , π

∗
|C|(xi)} is a

vector of probabilities (which are nonnegative and sum to one) and similarly for P̂ (xi). In
our simulations, we define KL divergence as

n−1
test

ntest∑
i=1

|C|∑
`=1

log

(
π̂`(xi)

π∗` (xi)

)
π̂`(xi)

and Hellinger distance as

n−1
test

ntest∑
i=1

√√√√1

2

|C|∑
`=1

(√
π̂`(xi)−

√
π∗` (xi)

)2

.

We include both since these are distinct measures of the distance between two probability
distributions.

Error rate, in contrast, is simply the classification accuracy. Given a set of testing set
responses ỹ1, . . . , ỹntest and their corresponding predictors x1, . . . ,xntest , the error rate is
simply

n−1
test

ntest∑
i=1

|C|∑
`=1

1(ỹi = `) · 1(arg max
k∈C

π̂k(xi) = `),

where as before, 1 is the indicator function. While error rate is of course a useful performance
metric, it does not quantify how well the entire probability mass function is estimated. For
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example, suppose both π̂k(xi) = π∗k(xi) for each `, but ỹi 6= arg maxk π̂k(xi). Then, even
though our probability mass perfectly matches the truth, this testing point would lower the
error rate. Thus, it is important to measure both classification accuracy (error rate) and the
degree of similarity between both the true and estimated probability mass function.

6 Simulation studies with mislabeled cells

In Supplementary Figure 5, we display simulation studies results under a scenario in which
we randomly mislabel fine cell types within coarse cell types. Specifically, we mislabel fine
categories within a coarse category (e.g. swap a label which was simulated to be A1 with
A2, or B1 with B2, etc.). If cells are incorrectly annotated, we believe this is the most likely
scenario since cells from different coarse categories are generally very distinct. We only
mislabel observations in the two datasets (Datasets 5 and 6 from Section 5.1) and vary the
mislabeling rate from 5% to 25%. All other simulation details are as in Section 5.1, and we
keep N = 4800, p = 500, s = 40, b = 0.1 fixed.

7 Supplementary Figures
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Figure 1: Graphical representation of binning functions corresponding to the example in
Figure 1 of the main text (see Section 2.1 of the main text for a description of binning
functions), where within each row, a unique color represents a label in that dataset which is
a bin of finest resolution categories.
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Figure 2: Graphical representation of the relationship between observed (annotated) labels
and the finest resolution categories for each of the ten datasets from our integrative analysis
in Section 6 of the main text. Within each row, when a color spans multiple finest resolution
categories (columns), this indicates cells of these fine resolution categories were “binned”
into a broader annotation label (coarse category) represented by the color. For example,
in the ding 2019 dataset (bottom row), each cell was annotated with one of eight distinct
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dataset which is a bin of the finest resolution categories with that color.
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Figure 9: Timing results in real data application for each method considered, for varying
numbers of cells per dataset used for fitting the model with the number of genes p = 1000
fixed, for each training/validation/test dataset combination (subplots). The column denotes
the validation dataset, the row denotes the test dataset, and the remaining 8 datasets were
used for training. Points denote the average and error bars denote the standard error of the
runtime across 5 replicates of different subsampled training datasets.
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Figure 10: Negative log-likelihood for each method considered, for each test dataset (sub-
plots), for varying numbers of genes used for fitting the model with the number of cells per
dataset nk = 10000 fixed. Points denote the average and error bars denote the standard error
of the average negative log-likelihood for a test dataset across training/validation dataset
combinations, for which the average for each training/validation dataset combination was
over five replicates of different subsampled training datasets.
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Figure 11: Error rate for each method considered, for each test dataset (subplots), for varying
numbers of genes used for fitting the model with the number of cells per dataset nk = 10000
fixed. Points denote the average and error bars denote the standard error of the average
error rate for a test dataset across training/validation dataset combinations, for which the
average for each training/validation dataset combination was over five replicates of different
subsampled training datasets.
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Figure 12: Negative log-likelihood for each method considered, for varying numbers of genes
used for fitting the model with the number of cells per dataset nk = 10000 fixed, for each
training/validation/test dataset combination (subplots). The column denotes the validation
dataset, the row denotes the test dataset, and the remaining 8 datasets were used for training.
Points denote the average and error bars denote the standard error of the negative log-
likelihood across 5 replicates of different subsampled training datasets.
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Figure 13: Error rate for each method considered, for varying numbers of genes used for
fitting the model with the number of cells per dataset nk = 10000 fixed, for each train-
ing/validation/test dataset combination (subplots). The column denotes the validation
dataset, the row denotes the test dataset, and the remaining 8 datasets were used for train-
ing. Points denote the average and error bars denote the standard error of the error rate
across 5 replicates of different subsampled training datasets.
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Figure 14: Timing results in real data application for each method considered, for each test
dataset (subplots), for varying numbers of genes used for fitting the model with the number
of cells per dataset nk = 10000 fixed. Points denote the average and error bars denote the
standard error of the average runtime for a test dataset across training/validation dataset
combinations, for which the average for each training/validation dataset combination was
over five replicates of different subsampled training datasets.
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Figure 15: Timing results for each method considered, for varying numbers of genes used
for fitting the model with the number of cells per dataset nk = 10000 fixed, for each
training/validation/test dataset combination (subplots). The column denotes the valida-
tion dataset, the row denotes the test dataset, and the remaining 8 datasets were used for
training. Points denote the average and error bars denote the standard error of the runtime
across 5 replicates of different subsampled training datasets.
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Figure 16: Heatmap showing the percentage of cells in (left) coarse and (right) conditional
predicted categories for each observed label in the pre- and post-treatment dataset from
Kang et al. (2018). Dots indicate that exactly zero cells are in that combination of observed
label and prediction.
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Figure 17: (A) Histogram of log fold change differences between the fine-level DE analysis
and the coarse-level analysis for all 31 genes which were only identified in the fine-level
analysis. (B) Gene expression of IER2 in the four fine categories. IER2 is significantly
DE only in CD4 TEM (highlighted panel), evident in the increase non-zero expression after
treatment.
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