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1 Proofs and derivations

1.1 Proof of Lemma 1

Let β = β(t), Γ = Γ(t−1), φ = φ(t) for notational convenience. The new iterate is

θ(t) = arg min
θ∈R|D|

{
fD(θ) + λg(β) + Γ> {θ − PD(log y −Xβ)}+

ρ

2
‖θ − PD(log y −Xβ)‖22

}
= arg min

θ∈R|D|

|D|∑
k=1

[
1

n2

{
δ̃k,1(θk)

− + δ̃k,2(−θk)−
}

+ Γkθk +
ρ

2

{
θk −

(
φk + ρ−1Γk

)}2]
(1)

where each k corresponds to one pair (i, j) ∈ D, φk is the kth component of φ = PD(log y −
Xβ)− ρ−1Γ, and δ̃k,· = (δi, δj). Thus, the optimization problem in (1) can be expressed as

|D| separate univariate optimization problems. Specifically, for k = 1, . . . , |D|,

θ
(t)
k = arg min

θ∈R

{
1

n2

{
δ̃k,1(θ)

− + δ̃k,2(−θ)−
}

+ Γkθ +
ρ

2

[
θ −

(
φk + ρ−1Γk

)]2}
= arg min

θ∈R

{
1

n2

{
δ̃k,1(θ)

− + δ̃k,2(−θ)−
}

+ Γkθ +
ρ

2
θ2 − ρθ

(
φk + ρ−1Γk

)}
= arg min

θ∈R

{
1

n2

{
δ̃k,1(θ)

− + δ̃k,2(−θ)−
}

+
ρ

2
θ2 − ρφkθ

}
(2)
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Let h(θ) = h1(θ) + ρ
2
θ2 − ρφkθ where h1(θ) = 1

n2

{
δ̃k,1(θ)

− + δ̃k,2(−θ)−
}

. Because the

optimization in (2) is convex, we know that θ is optimal for (2) if and only if 0 ∈ ∂h(θ) or

equivalently,

0 = z + ρθ − ρφk

where z ∈ ∂h1(θ) with ∂h1(θ) being the subdifferential of h1 at θ. It can be verified that

∂h1(θ) =


− δ̃k,1

n2 if θ < 0
δ̃k,2
n2 if θ > 0[

− δ̃k,1
n2 ,

δ̃k,2
n2

]
if θ = 0

.

Then, we have that

∂h(θ) = ∂h1(θ) + ρθ − ρφk =


ρ(θ − φk)− δ̃k,1

n2 if θ < 0

ρ(θ − φk) +
δ̃k,2
n2 if θ > 0[

ρ(θ − φk)− δ̃k,1
n2 , ρ(θ − φk) +

δ̃k,2
n2

]
if θ = 0.

We will now show that the choices described in Lemma 1 yield 0 ∈ ∂h(θ) going case-by-case.

Case 1: Suppose that φk − δ̃k,2
ρn2 > 0. Then, setting θ = φk − δ̃k,2

ρn2

∂h(θ) = ∂h

(
φk −

δ̃k,2
ρn2

)
= ρ

(
φk −

δ̃k,2
ρn2
− φk

)
+
δ̃k,2
n2

= − δ̃k,2
n2

+
δ̃k,2
n2

= 0

Case 2: Suppose that φk +
δ̃k,1
ρn2 < 0. Then, setting θ = φk +

δ̃k,1
ρn2

∂h(θ) = ∂h

(
φk +

δ̃k,1
ρn2

)
= ρ

(
φk +

δ̃k,1
ρn2
− φk

)
− δ̃k,1

n2
=
δ̃k,1
n2
− δ̃k,1

n2
= 0

Case 3: Suppose that φk − δ̃k,2
ρn2 ≤ 0 and φk +

δ̃k,1
ρn2 ≥ 0. Then −ρφk − δ̃k,1

n2 ≤ 0 and

−ρφk +
δ̃k,2
n2 ≥ 0, so setting θ = 0 yields

∂h(θ) = ∂h(0) =

[
−ρφk −

δ̃k,1
n2

,−ρφk +
δ̃k,2
n2

]
3 0,

as required. �
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1.2 Derivation of β update

In this section, we provide a derivation of the updating equation (16) from the main manuscript.

Notice

β(t) = arg min
β∈Rp

{
λg(β) +

ρ

2
‖θ(t−1) + ρ−1Γ(t−1) − PD (log y −Xβ) ‖22

+
ρ

2
(β − β(t−1))>

(
ηIp −X>P>DPDX

)
(β − β(t−1))

}
= arg min

β∈Rp

{(
θ(t−1) + ρ−1Γ(t−1) − PD log y + PDXβ

)> (
θ(t−1) + ρ−1Γ(t−1) − PD log y + PDXβ

)
+

2λ

ρ
g(β) + (β − β(t−1))>

(
ηIp −X>P>DPDX

)
(β − β(t−1))

}
so that ignoring terms not depending on β, we have

= arg min
β∈Rp

{
2λ

ρ
g(β) +

(
2β>X>P>Dθ

(t−1) + 2ρ−1β>X>P>DΓ(t−1) − 2β>X>P>DPD log y+

+β>X>P>DPDXβ
)

+
(
ηβ>β − β>X>P>DPDXβ − 2ηβ>β(t−1) + 2β>X>P>DPDXβ

(t−1))}
= arg min

β∈Rp

{
2λ

ρ
g(β) + ηβ>β + 2β>

(
X>P>Dθ

(t−1) + ρ−1X>P>DΓ(t−1)+

−X>P>DPD log y − ηβ(t−1) +X>P>DPDXβ
(t−1))}

= arg min
β∈Rp

{
2λ

ρη
g(β) + β>β + 2β>

(
1

η
X>P>Dθ

(t−1) +
1

η
ρ−1X>P>DΓ(t−1)+

−1

η
X>P>DPD log y +

1

η
X>P>DPDXβ

(t−1) − β(t−1)
)}

= arg min
β∈Rp

[
λ

ρη
g(β) +

1

2
‖β − η−1X>P>D

{
PD
(
log y −Xβ(t−1))− θ(t−1) − ρ−1Γ(t−1)}− β(t−1)‖22

]
= Prox(λ/ρη)g

[
1

η
X>P>D

{
PD(log y −Xβ(t−1))− θ(t−1) − ρ−1Γ(t−1)}+ β(t−1)

]
.

2 Variable selection accuracy results

Beyond model error and concordance, another important performance metric for an estimator

is variable selection accuracy. The variable selection accuracy of β̂, an estimator of β∗, can
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be quantified through the true positive and true negative variable selection rates,

|{j : β̂j 6= 0 ∩ β∗j 6= 0, j ∈ [p]}|
|{j : β∗j 6= 0, j ∈ [p]}|

and
|{j : β̂j = 0 ∩ β∗j = 0, j ∈ [p]}|
|{j : β∗j = 0, j ∈ [p]}|

,

respectively, where |A| denotes the cardinality of a set A. An estimate with a true positive

rate of one has correctly identified all nonzero entries of β∗, but may have included many

false positives. Conversely, an estimate with a true negative rate of one correctly identifies

all entries which are zero, but may include many false negatives. Thus together, true positive

and true negative rates give a sense of the overall variable selection accuracy.

In Figure 6, we display both true positive and true negative rates for the four considered

methods under the same settings which gave rise to Figure 3 of the main manuscript (i.e.,

errors following a logistic distribution and β∗ having ten nonzero entries). For, WLS-Or,

the oracle version of the weighted least squares approach, we recorded these metrics for the

tuning parameter which yielded the smallest value of equation (3) from main manuscript

evaluated on the testing set. In Figure 7, we display variable selection rates under group-lasso

penalization: the settings here are exactly those from Figure 4 of the main manuscript. In

Figure 8, we display variable selection resutls under the same settings as in Figure 6, but

without censoring.

Overall, in Figures 6, 7, and 8, we see that the true positive rate of the rank-based

estimator is substantially higher than of either of the weighted least squares estimators. In

contrast, the weighted least squares estimator tends to have higher true negative rate than

does the rank-based estimator. Together, these results suggest the weighted least squares

estimator yields smaller models, but tends to omit many important variables. This may

partly explain why these estimators are outperformed in both simulation studies and real

data analyses in terms of model error and concordance. When there is no censoring, as one

may expect, the regularized weighted least square estimators have slightly better variable

selection accuracy than does the regularized Gehan estimator.

We display additional simulation results under normally distributed errors in the next

subsection.
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Figure 6: True positive rates (top row) and true negative rates (bottom row) for the four
considered methods averaged over 100 independent replications with logistic errors, β∗ having
ten elements set equal to one, and g being the elastic net penalty with α = 0.5.
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Figure 7: True positive rates (top row) and true negative rates (bottom row) for the four
considered methods averaged over 100 independent replications with logistic errors, β∗ having
ten elements set equal to 0.5 (five in two different groups, with each group of size 10), and g
being the group lasso penalty with α = 0.
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Figure 8: True positive rates (top row) and true negative rates (bottom row) for the four
considered methods averaged over 100 independent replications with logistic errors, no
censoring, β∗ having ten elements set equal to one, and g being the elastic net penalty with
α = 0.5.

3 Simulation results under normal errors

In this section, we present additional simulation results mentioned in Section 6 of the

manuscript. Figure 9 and 10 correspond to Figures 3 and 4 of the main manuscript, but

under normal errors.

For the results presented in Figures 11 and 12, data were generated in the same manner

as described in Section 6 with β∗ having ten randomly selected components equal one and all

others equal to zero. The only difference is that here, there is no censoring – all failure times

are observed. This is an ideal scenario for the weighted least squares approach, particularly

under normal errors, because one does not have to do any reweighted to account for censored

observations.

We see under both logistic and normal errors without censoring, the methods’ relative

perform is remarkably similar. Under normal errors, the least squares estimator is better both

in terms of model error and concordance under every scenario considered. With logistic errors,

which have heavier tails than normal errors, the differences between the two approaches is less

substantial. In many scenarios, the Gehan-Val performs as well as WLS-Val. When the error

variance is large under logistic errors, even Gehan-CV(LP) outperforms the WLS estimators.
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Figure 9: Model error (top row) and concordance (bottom row) for the four considered
methods averaged over 100 independent replications with normal errors, β∗ having ten
elements set equal to one, and g being the elastic net penalty with α = 0.5.
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Figure 10: Model error (top row) and concordance (bottom row) for the four considered
methods averaged over 100 independent replications with normal errors, β∗ having ten
elements set equal to 0.5 (five in two groups of size ten), and g being the sparse group lasso
penalty with α = 0.
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Figure 11: Model error (top row) and concordance (bottom row) for the four considered
methods averaged over 100 independent replications with logistic errors, no censoring, β∗
having ten elements set equal to one, and g being the elastic net penalty with α = 0.5.
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Figure 12: Model error (top row) and concordance (bottom row) for the four considered
methods averaged over 100 independent replications with normal errors, no censoring, β∗
having ten elements set equal to one, and g being the elastic net penalty with α = 0.5.

4 Comparison to hqreg

As mentioned in the main manuscript, the R package hqreg can be used to compute

arg minβ∈Rp hM(β) + λg(β) when g is the elastic net penalty. In the settings from Figure 2
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of the main manuscript, hqreg runs nearly as fast as penAFT, and is nearly as accurate (in

terms of objective function value at the returned estimate) when carefully implemented using

the function hqreg raw, rescaling the inputs, and tinkering with the convergence tolerances.

Convergence tolerances
η1 η2 η3 η4 η5

M = n2102 1.219 1.462 5.083 20.117 61.026
M = n2104 1.331 1.616 5.320 20.793 63.454
M = n2106 1.238 1.515 5.216 20.662 63.001

Table 3: Average solution path computing times for hqreg relative to penAFT. For example,
a relative computing time of 5, indicates that hqreg took five times as long to compute than
did penAFT. Various values of η at the different choices of M are described in the text. For
reference, the average computing time of penAFT was 3.29 seconds.
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Figure 13: Average objective function values at termation for hqreg relative to penAFT. For
example, a relative objective function value of 1.1 indicates that the objective function value
at the hqreg solution was 10% larger than that at the penAFT solution. Red lines denote
convergence tolerance η1, gold denotes η2, green denotes η3, blue denotes η4, and pink denotes
η5.

However, the dimensions considered in Figure 2 were chosen only to allow for computational

feasibility of the two competitors. Here, we compare penAFT to hqreg in slightly higher

dimensional settings. Specifically, we generate data from the same model as described in

Section 5.1 with n = 150 and p = 1000. We randomly select 20 regression coefficients to be

equal to one and set all others equal to zero.
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To implement hqreg, we must choose M , the large constant defining hM , and set the

adjust the convergence tolerance. We found that for particular choices of M , the de-

fault convergence tolerance in hqreg either gave solutions too inaccurate, or took too

long to compute. Here, we consider n2102, n2104 and n2106 as candidate values for M .

For these settings we tried convergence tolerances η ∈ {η1, η2, η3, η4, η5} where we set set

η = {10−5, 10−6, 10−7, 10−8, 10−9} when M = n2102, set η = {10−7, 10−8, 10−9, 10−10, 10−11}
when M = n2104, and set η = {10−8, 10−9, 10−10, 10−11, 10−12} when M = n2106.

In Table 3, we display the average computing times (over 100 independently generated

datasets) for the entire solution path of 100 tuning parameter values (with κ = 0.1, the

default) for hqreg relative to penAFT (i.e., a value of 1.1 means that on average, hqreg took

10% longer than penAFT). We see that for η1, η2, and η3, computing times are similar to

those when using penAFT. However, for η4 and η5, computing times are much longer than

those for penAFT. In Figure 13, we display the average ratio of the objective function values

at convergence for hqreg relative to that of penAFT at each tuning parameter value. As we

can see, for large values of the tuning parameter, hqreg is reasonably accurate relative to

penAFT. However, for smaller values of the tuning parameter, even using the computational

time-consuming η5 as a convergence tolerance does not always yield solutions as accurate as

penAFT. Note further that hqreg employs many additional tricks such as the adaptive strong

rule (which we could use in future versions of our package); whereas penAFT incurs additional

computing times to determine the candidate tuning parameter set internally. To conclude,

between the challenge of setting up the data correctly, choosing a particular M , and adjusting

the convergence tolerance to be sufficiently strict, computing arg minβ∈Rp hM (β)+λg(β) with

hqreg is doable but tedious, and is not likely to provide a solution as accurate as penAFT in

a comparable amount of time.

We point out that this is not meant to be a criticism of hqreg: indeed, when the package

is used on the problems for which it was intended, it performs quite well. However, when

dealing with the special structure of hM – specifically the input involving M – this seems

problematic. Performing cross-validation may complicate issues even further: for example

does M need be adjusted to account for the size of each fold? Fortunately, penAFT does not

require a resolution to such concerns.
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