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1. Derivation of Algorithm 2

To solve the optimization problem in Step 2 of Algorithm 1 when M > 1, we use a blockwise

coordinate descent algorithm. Specifically, we update β with σ̃2 fixed and vice versa. Because

the blockwise update for σ̃2 is computationally challenging, we use a modified version of the

algorithm proposed by Zhou et al. (2018) to update σ̃2. Briefly, their algorithm exploits the

minorize-maximize principle: its iterates maximize a minorizing function at the previous iterate.

Let h(θ) denote the original objective function evaluated at θ. Let g(· | θ−) be a function of θ−.

For g(· | θ−) to a minorization of h(·), it must satisfy two conditions: (i) the tangency condition

g(θ− | θ−) = f(θ−) for all θ− and (ii) the domination condition g(θ | θ−) 6 h(θ) for all θ. Then,

for θ+ = arg maxθ g(θ | θ−), it follows that

h(θ+) > g(θ+ | θ−) > g(θ− | θ−) = h(θ−),

where the first inequality follows from the domination condition, the second follows from the

definition of θ+, and the equality follows from the tangency condition. Thus, since h(θ+) > h(θ−),
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we are ensured to monotonically increase our objective function. Generalizing this approach

suggests sequentially updating θ for b = 1, 2, . . . , using

θ(b+1) = arg max
θ

g(θ | θ(b)),

until the original objective function value converges. This approach is especially useful when a

minorizing function g exists such that arg maxθ g(θ | θ(b)) is easier to solve than arg maxθ h(θ).

See Lange (2016) for more on the minorize-maximize principle.

Focusing specifically on Algorithm 2, we start by deriving the update for β with σ̃2(b) fixed.

This subproblem is convex and can be solved in closed form, so we do not require the minorize-

maximize approach. In particular, we solve

β(b+1) = arg min
β∈Rq+1

s−1r sr∑
j=1

tr
{

(T̂j − Zβ)(T̂j − Zβ)′K̃(X, σ̃2(b))−1
} ,

where tr denotes the trace operator. The first order conditions for optimality are

Z ′K̃(X, σ̃2(b))−1Zβ = s−1r

sr∑
j=1

ZK̃(X, σ̃2(b))−1T̂j ,

so that letting T̄ = s−1r
∑sr
j=1 T̂j , we have

β(b+1) =
[
Z ′K̃(X, σ̃2(b))−1Z

]−1 [
Z ′K̃(X, σ̃2(b))−1T̄

]
,

which is Step 2 of Algorithm 2. We then derive the updating equations in Steps 3 and 4 using

the minorize-maximize approach from Zhou et al. (2018). Treating β(b+1) as fixed, redefine h as

h(σ̃2,β(b+1)) = −s−1r
sr∑
j=1

(T̂j − Zβ(b+1))′K̃(X, σ̃2)−1(T̂j − Zβ(b+1))− log det{K̃(X, σ̃2)},

where det denotes the determinant operator. Let σ̃2(b) denote the previous iterate of σ̃2. Modi-

fying (5) from Zhou et al. (2018),

−(T̂j−Zβ(b+1))′K̃(X, σ̃2)−1(T̂j − Zβ(b+1)) (1.1)

> −(T̂j − Zβ(b+1))′K̃(X, σ̃2(b))−1

{
M+1∑
s=1

σ
4(b)
s

σ2
s

ks(X,X)

}
K̃(X, σ̃2(b))−1(T̂j − Zβ(b+1))
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where for notational simplicity, we define σ2
M+1 ≡ σ2

ε and kM+1(X,X) ≡ In. Modifying (6) from

Zhou et al. (2018),

− log det{K̃(X, σ̃2)} > − log det{K̃(X, σ̃2(b))} − tr
[
−K̃(X, σ̃2(b))−1{K̃(X, σ̃2)− K̃(X, σ̃2(b))}

]
(1.2)

It is straightforward to check that both the domination and tangency conditions hold for the

right hand sides of (1.1) and (1.2). Thus, a natural minorization of h(σ̃2,β(b+1)) combines (1.1)

and (1.2): ignoring constants which do not depend on σ̃2, the minorizing function at σ̃2(b) is

g(σ̃2,β(b+1)|σ̃2(b)) = −s−1r
sr∑
j=1

M+1∑
s=1

[
σ2
str
{
ks(X,X)K̃(X, σ̃2(b))−1

}
(1.3)

+
σ
4(b)
s

σ2
s

(T̂j − Zβ(b+1))′K̃(X, σ̃2(b))−1ks(X,X)K̃(X, σ̃2(b))−1(T̂j − Zβ(b+1))
]

.

Following the minorize-maximize principle, we update σ̃2 by solving:

σ̃2(b+1) = arg min
σ̃2∈RM

+ ×R+

g(σ̃2,β(b+1)|σ̃2(b)). (1.4)

As noted in Zhou et al. (2018), (1.4) is separable across components of σ̃2. In particular,

g(σ̃2,β(b+1)|σ̃2(b)) is minimized with respect to the sth component of σ̄2 when

σ2(b+1)
s =

σ
2(b)
s√
sr

∑sr
j=1(T̂j − Zβ(b+1))′K̃(X, σ̃2(b))−1ks(X,X)K̃(X, σ̃2(b))−1(T̂j − Zβ(b+1))

tr
[
ks(X,X)K̃(X, σ̃2(b))−1

]
1/2

,

which are the updating equations in Steps 3 and 4 of Algorithm 2. Putting both the β(b+1) and

σ̃2(b+1) updates together ensures:

h(σ̃2(b+1),β(b+1)) > g(σ̃2(b+1),β(b+1) | σ̃2(b)) (1.5)

> g(σ̃2(b),β(b+1) | σ̃2(b)) (1.6)

= h(σ̃2(b),β(b+1)) (1.7)

> h(σ̃2(b),β(b)) (1.8)

where (1.5) follows from the minorization condition, (1.6) follows from the definition of σ̃2(b+1)

from (1.4), (1.7) follows from the tangency condition, and (1.8) follows from the fact that h is
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convex with respect to β and that β(b+1) is its global minimizer. Hence, Algorithm 2 has the

“strict ascent” property, meaning that its iterates monotonically increase the objective function.

2. Sensitivity analysis of MC-EM algorithm

In this section, we consider the robustness of our MC-EM algorithm to initial values and ex-

amine the Monte-Carlo error at convergence. To do so, we fit the Gaussian process accelerated

failure time model to the complete KIRC dataset one hundred times using both genome-wide

and pathway-based kernels, i.e., GPR:K and GPR:M. Because Algorithm 1 requires random data

generation, the path of iterates will be different each of the hundred times we fit the model.

We also considered two types of initializing values: one sets all variance components equal to

one, while the other uses initializing values randomly drawn from a uniform distribution on the

interval [0.5, 5].

In Figure 1, we display the values of the iterates for the four variations of our method. Within

each plot, one hundred model fits are displayed, with each line denoting one variance component’s

value at a certain iteration for one model fit. We notice that when the same initial values are

used, i.e., in (a) and (c), the paths of the iterates tend to be very similar, with some variation

coming from the Monte-Carlo error. Nevertheless, we see that as the iteration count increases, the

Monte-Carlo error seems to decrease and parameter values at convergence are nearly equivalent

for all one hundred model fits.

3. Additional simulation studies

3.1 Effect of censoring proportion

To examine the effect of censoring on the performance of our method, we conducted additional

simulations wherein we modified the settings from the main manuscript to have varying censoring

rates. For one hundred independent replications, we generated uncensored survival times from
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Fig. 1. Plots displaying the iterates of the variance components when fitting the Gaussian process ac-
celerated failure time model to the complete KIRC data using Algorithm 1. We display iterates for the
genome-wide kernel with (a) all initial values equal to one and (b) initial values randomly drawn from
a uniform distribution. In (c), we display iterates for the pathway-based kernels with all initial values
equal to one and in (d), with all initial values random drawn from a uniform distribution.

Model 1 of the main manuscript using the genome-wide kernel. For each of the hundred datasets,

we also generated four independent sets of censoring times so that we could use the considered

methods on the same dataset with multiple censoring rates.

Censoring times were drawn from an exponential distribution with mean
{
Qτ ({Sj}nj=1)

}−1
and Qτ denotes the τth quantile. Unlike in the main manuscript, τ was the same for all i: we

considered τ ∈ {0.40, 0.60, 0.80, 0.90} which led to datasets with average censoring rates of ap-

proximately 0.67, 0.53, 0.35, and 0.24 respectively. In Figure 2, we display the C-index, integrated
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Fig. 2. Boxplots of (relative) C-index, integrated AUC, and integrated Brier scores for multiple methods
based on different censoring time data generating models. Boxplots in (a) display the metrics directly,
whereas the boxplots in (b) display the relative metrics. Lightest grey boxplots correspond to the highest
censoring proportion; darkest grey correspond to the lowest censoring proportion. Censoring proportions
were approximately 0.67, 0.53, 0.35, and 0.24.

AUC, and integrated Brier Scores for a subset of methods included in the main manuscript simu-

lations. Pre-screened methods were also considered, but performed worse then their genome-wide

counterparts, and thus were omitted from the displayed results.

As one may expect, the censoring proportion has an effect on all methods’ performance. In

Figure 2(a), we notice that C-index, integrated AUC, and integrated Brier scores are improved
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Fig. 3. Boxplots of relative C-index, integrated AUC, and integrated Brier score for five kernel specifica-
tions across five data generating models.

as censoring proportions decrease. In Figure 2(b), we display relative C-index, relative integrated

AUC, and relative integrated Brier score. The relative performances suggest that as censoring

proportions decrease, our method using the genome-wide kernel clearly outperforms all competi-

tors. At the highest censoring rate, our method still performs best, although the differences are

substantial for relative C-index and relative integrated AUC.

3.2 Effect of kernel choice

To study the sensitivity of our method to the choice of kernel, we performed additional simulations

under multiple kernel specifications. For one hundred independent replications, we generated data

from Model 1 of the main manuscript, using the same distribution for censoring times, where as

before, η ∼ Nn

{
0,K(X,σ2)

}
where [K(X,σ2)]j,k = 3k̃(xj , xk) for j 6= k where k̃ had one of the

following forms:

RBF: Radial basis kernel function:

k̃(xj , xk) = exp

{
‖xj − xk‖2

maxl,m ‖xj − xk‖2

}
, (j, k) ∈ {1, . . . , n} × {1, . . . , n} .
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Cor: Correlation matrix kernel function

k̃(xj , xk) =
x̃′j x̃k

‖x̃j‖2‖x̃k‖2
, (j, k) ∈ {1, . . . , n} × {1, . . . , n} ,

where x̃j = xj − 1p
1
p (
∑p
s=1 xjs)

Poly-2: Normalized polynomial kernel of order two

k̃(xj , xk) =
(x′jxk)2

‖xj‖22‖xk‖22
∈ {1, . . . , n} × {1, . . . , n} .

Poly-3: Normalized polynomial kernel of order three

k̃(xj , xk) =
(x′jxk)3

(‖xj‖32‖xk‖32)
∈ {1, . . . , n} × {1, . . . , n} .

M: The weighted sum of the four previous kernels with σ2
s = 3/4 for s = 1, . . . , 4.

In each replication, we fit the Gaussian process accelerated failure time model using all five

of the aforementioned kernels. Thus, for each replication, only one of the Gaussian process accel-

erated failure time models is correctly specified, although the multiple kernel version, M, always

has the correctly specified model as a special case.

In Figure 3, we display the relative performances of each of the five kernel specifications. We

see that when RBF is the correct kernel, the correctly specified model substantially outperforms

the others. The multiple kernel version M performs only slightly worse in this case, which is

expected. With the other data generating kernels, the correctly specified model performs best,

except Poly-3, where we see that Poly-2 and Cor also perform well.

3.3 Effect of training sample size

To analyze the performance of our method under varying sample sizes, we obtained RNAseq

data from 832 patients with breast invasive carcinoma (BRCA) collected by TCGA using the

TCGA2STAT package in R. We normalized the RNAseq counts in the same manner as described in
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Section 5.1 of the main manuscript. We also obtained clinical/demographic data including age

(in days) and tumor stage, which had three levels in the BRCA dataset we used.

To analyze the effect of training sample size, we used subsets of the complete BRCA dataset.

Namely, for one hundred independent replications, we first randomly selected 100 subjects to

serve as testing data and randomly selected either 432, 532, 632, or 732 subjects to serve as

training data. In each replication, we generated data from the following model:

Gaussian process AFT model. Log-survival times are generated as a realization of the Gaus-

sian process accelerated failure time model:

T = Zβ + η + γ,

where γ ∼ Nn {0, 0.5In} and η ∼ Nn

{
0,K(X,σ2)

}
with K(X,σ2) defined below and

β = (6.2,−0.3,−1.1,−1 × 10−5) where the columns of Z corresponds to the intercept,

tumor stage II, tumor stage III, and age in days.

As in the main manuscript, we set K(X,σ2) to equal the genome-wide kernel from equation (4.8)

with σ2
G = 3. The ith subject’s censoring time is drawn from an exponential distribution with

mean
{
Qτi({Sj}nj=1)

}−1
where Qc denotes the cth quantile and τi = .20, .70, or .80 for subjects

with tumor stages I, II, or III respectively.

Relative performance metrics are displayed in Figure 4(b). Our primary observation is that

as the training sample size increases to 732 (displayed in lightest grey boxplots), both GPR:K and

GPR:M tend to more clearly outperform the competitors. Interestingly, while it appears that in

general, increasing sample size seemed to improve both C-index and integrated AUC, integrated

Brier scores actually increased slightly as the training sample size increases.
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Fig. 4. Boxplots of (relative) C-index, integrated AUC, and integrated Brier scores for multiple methods
under different training sample sizes as described in Section 3.3. Lightest grey boxplots correspond to
the largest training sample size (732); and darkest grey correspond to the smallest training sample size
(432).
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3.4 Performance under sparse AFT model

In this section, we analyze the performance of our method when the genetic contribution to

survival is through a sparse linear model. For one hundred independent replications, we generate

data from the following model:

Gaussian AFT model: Log-survival times are generated as a realization of the accelerated

failure time model:

T = Zβ +Xη + ε,

where X ∈ Rn×p denotes the standardized gene expression matrix (i.e., X has column-

wise average zero and standard deviation one), and η ∈ Rp has 50, 100, or 150 randomly

selected nonzero entries with magnitudes 5−1, 10−1, or 15−1, respectively, and the entries’

signs assigned randomly. In addition, we set β = (6.2,−0.5,−1.2,−2.0,−1 × 10−5) where

the columns of Z corresponds to the intercept, tumor stage II, tumor stage III, tumor stage

IV, and age in days. Finally, ε ∼ Nn (0, .5In).

We consider the same competitors as in other scenarios. However, in this setting, the pathway-

based kernels used for GPR:M contain one kernel computed using only genes corresponding to the

nonzero elements of η, so in this sense, GPR:M has unrealistic oracle knowledge but serves as

a best-case for our method. Results are displayed in Figure 5, where we note that GPR:K, the

version of our method using a genome-wide gene expression kernel, actually outperforms both

linear AFT variations. This may partly be due to the fact that our model correctly specifies the

error distribution, so the imputation scheme we use is more accurate than the AFT variations

which are nonparameteric.
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Fig. 5. Boxplots of (relative) C-index, integrated AUC, and integrated Brier scores for multiple methods
under different levels of sparsity in the Gaussian AFT model described in Section 3.4. Boxplots in
(a) display the metrics directly, whereas the boxplots in (b) display the relative metrics. Lightest grey
boxplots correspond to 150 nonzero effects, grey correspond to 100 nonzero effects; and darkest grey
correspond to 50 nonzero effects.
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4. Additional figures

In Figure 6(a), we display boxplots showing the correlation between the true log-survival time

and the imputed log-survival for the censored training data from the simulation studies. The

imputations compared are those obtained using the iterative method of Grimes et al. (2018)

based only on clinical/demographic variables, and those at convergence of our algorithm for both

GPR:K and GPR:M.

In Figure 6(b), we display a histogram of the off-diagonal entries of the radial basis kernel

used to define the genome-wide effect in the simulation studies.
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Fig. 6. (a) Correlations between the imputed log-survival time and true log-survival time for the censored
outcomes in the training sets. (b) A histogram showing the off-diagonal entries of the normalized radial
basis kernel using genome-wide gene expression.
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