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A Moment calculations

We compute the moments in Example 2 that include conditionally quasi-Poisson distributed
responses. We use repeatedly that the moment generating function for N(µ, σ2) is M(t) =
exp(tµ+ t2σ2/2). First, E(Yj) = E[E(Yj | Wj)] = E[exp(Wj)] = exp(XT

j β + Σjj/2). Similarly,
for j = 3, 4,

E[Y 2
j ] = E[E(Y 2

j | Wj)]

= E[var(Yj | Wj) + E(Yj | Wj)
2]

= E[ψj exp(Wj)] + E[exp(2Wj)]

= ψj exp(XT
j β + Σjj/2) + exp(2XT

j β + 2Σjj),

where we used 2Wj ∼ N(2XT
j β, 4Σjj). It follows that, for j = 3, 4,

var(Yj) = E(Y 2
j )− E(Yj)

2

= ψj exp(XT
j β + Σjj/2) + exp(2XT

j β + 2Σjj)− exp(2XT
j β + Σjj)

= exp(2XT
j β + Σjj)

[
ψj exp(−XT

j β − Σjj/2) + exp(Σjj)− 1
]
.

To get the covariance cov(Yj, Yk) for j = 1, 2 and k = 3, 4, observe that since Yj and Yk are
uncorrelated given W ,

cov(Yj, Yk) = cov[E(Yj | W ),E(Yk | W )]

= cov[Wj, exp(Wk)]

= E[Wj exp(Wk)]−XT
j β exp(XT

k β + Σk/2),
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and

E[Wj exp(Wk)] = E
[
∂

∂tj
exp(tjWj + tkWk) |tj=0,t1=1

]
.

Now, for (tj, tk) in a neighborhood of (0, 1),∣∣∣∣ ∂∂tj exp(tjWj + tkWk)

∣∣∣∣ = |Wj exp(tjWj + tkWk)| ≤ exp(|Wj|) exp(|Wj|+ |Wk|),

which has finite expectation since Wj and Wk are jointly normal. Thus, we can move the
derivative outside the expectation to get

E[Wj exp(Wk)] =
∂

∂tj
E [exp(tjWj + tkWk)] |tj=0,t1=1

=
∂

∂tj
exp

(
tjX

T
j β + tkX

T
k β + t2jΣ

2
jj/2 + tjtkΣjk + t2kΣkk/2

)
|tj=0,t1=1

= (XT
j β + Σjk) exp

(
XT
k β + Σkk/2

)
where in the second equality we used the moment generating function for

tjWj + tkWk ∼ N
(
tjX

T
j β + tkX

T
k β, t

2
jΣ

2
jj + 2tjtkΣjk + t2kΣkk

)
.

Putting things together, we have

cov(Yj, Yk) = (XT
j β + Σjk) exp

(
XT
k β + Σkk/2

)
−XT

j β exp
(
XT
k β + Σkk/2

)
= Σj,k exp

(
XT
k β + Σkk/2

)
.

Lastly, we compute

cov(Y3, Y4) = cov[exp(W3), exp(W4)]

= E[exp(W3) exp(W4)]− E[exp(W3)]E[exp(W4)]

= E[exp(W3 +W4)]− exp(XT
3 β + Σ33/2 +XT

4 β + Σ44/2)

= exp(XT
3 β + Σ33/2 +XT

4 β + Σ44/2) [exp(Σ34)− 1] ,

where, as before, the last step used the moment generating function for the normal variable
W3 +W4.

B Proofs

Lemma B.1. Let W ∼ N(µ, σ2) and Φ denote the standard normal cumulative distribution
function, then

E[Φ(W )] = Φ(µ/
√

1 + σ2))

Proof. This is well known and is, for example, essentially Equation 10 in McCulloch (2008).
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Let φσ(u, v) be the bivariate normal density mean zero, unit variances, and covariance σ.

Lemma B.2. The function h defined by

h(σ, c1, c2) =
∂

∂σ

∫∫
I(u > c1)I(v > c2)φσ(u, v)dudv

is strictly positive and continuous on (−1, 1)× R × R.

Proof. We first prove h is strictly positive. Let U and V denote random variables with density
φσ(u, v). By using that U | V ∼ N(σV, 1 − σ2) and letting Φ denote the standard normal
cumulative distribution function,

E[I(U > c1)I(V > c2)] = E {I(V > c2)E [I(U > c1) | V ]}
= E [I(V > c2)P(U > c1 | V )]

= E
{
I(V > c2)

[
1− Φ

(
c1 − σV√

1− σ2

)]}
= P(V > c2)− E

[
I(V > c2)Φ

(
c1 − σV√

1− σ2

)]
.

Denote the expectation in the last line by J1(σ, c1, c2); we want to show that ∂J1(σ, c1, c2)/∂σ <
0. Differentiating under the integral we find∫ ∞

c2

φ

(
c1 − σv√

1− σ2

)
c1σ − v

(1− σ2)3/2
φ(v)dv,

where φ is the standard normal probability density function. Differentiating under the
integral is permissible because φ(·), 1/(1− σ2)3/2, and σ are all bounded on small enough
neighborhoods of any σ ∈ (−1, 1). Now, if c2 ≥ σc1 the integrand is negative on the set of
integration we are done. Suppose thus c2 < σc1, and note

E
[
Φ

(
c1 − σV√

1− σ2

)]
= E

[
I(V > c2)Φ

(
c1 − σV√

1− σ2

)]
+ E

[
I(V ≤ c2)Φ

(
c1 − σV√

1− σ2

)]
= J1(σ, c1, c2) + J2(σ, c1, c2),

where J2 is defined by the last equality. Lemma B.1 says the left hand side is

E

[
Φ

(
c1/
√

1− σ2√
1 + σ2/(1− σ2)

)]
= Φ(c1).

Thus, differentiating both sides with respect to σ gives

0 =
∂

∂σ
J1(σ, c1, c2) +

∂

∂σ
J2(σ, c1, c2),

3



so it suffices to show the last term is positive. But by argument similar to when differentiating
J1,

∂

∂σ
J2(σ, c1, c2) =

∫ c2

−∞
φ

(
c1 − σv√

1− σ2

)
c1σ − v

(1− σ2)3/2
φ(v)dv,

which is positive since the integrand is positive on the set of integration. Finally, that
h(σ, c1, c2) is continuous follows from the dominated convergence theorem since the integrand
is bounded on small enough neighborhoods around any interior point of (−1, 1)×R×R.

Lemma B.3. If f, g : R → R are increasing and non-constant, and∫∫
|f(u)||g(v)|φσ(u, v)dudv <∞

for all σ ∈ (−1, 1), then s : (−1, 1)→ R defined by

s(σ) =

∫∫
f(u)g(v)φσ(u, v)dudv

is strictly increasing.

Proof. First observe that since the marginal densities do not depend on u and v, we may
replace f and g by f − f(0) and g − g(0); that is, we assume without loss of generality that
f(0) = g(0) = 0.

For every n = 1, 2, . . . and i = 0, . . . , n2n+1 = mn, let ani = −n+ i/2n. Then for every n,

−n = an0 < · · · < amn/2 = 0 < · · · < amn = n.

and the distance between consecutive ani is 1/2n. Define

f−n (u) = f(an0) +

mn/2∑
i=1

[f(ani)− f(an(i−1))]I(u ≥ an(i−1)),

f+
n (u) =

mn∑
i=mn/2+1

[f(ani)− f(an(i−1))]I(u ≥ ani),

and
fn = f−n + f+

n .

Note that if u ≥ −1/2n, then f−n (u) = f(amn/2) = 0, and if u < 1/2n, then f+
n (u) = 0.

Thus, fn(0) = 0 for every n and at most one of f−n and f+
n are non-zero for the same u. If

u < 0, then fn(u) = f−n (u) = f(anj) where anj, j = j(n), is the smallest ani greater than u.
Since f is increasing, 0 ≥ f(anj) ≥ f(u) and if u is a point of continuity of f , f(anj) ↓ f(u).
Because f is increasing, it has at most countably many points of discontinuity and hence, for
Lebesgue-almost every u < 0, fn(u) ↓ f(u). A similar argument shows 0 ≤ fn(u) ↑ f(u) for
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Lebesgue-almost every u > 0. Thus, |fn| ≤ |f | and fn → f for Lebesgue-almost every u. For
simplicity, we write

fn(u) = f(−n) +
mn∑
i=1

dfniI(u ≥ cni),

where dni = f(ani) − f(an(i−1)) and cni = an(i−1) for i = 1, . . . ,mn/2 and cni = ani for

i = mn/2 + 1, . . . ,mn. Note that the dfni are non-negative since f is increasing.
Define hn as fn but with g playing the role of f , so that

hn(v) = g(−n) +
mn∑
i=1

dgniI(v ≥ cni).

Now with sn(σ) =
∫∫

fn(u)hn(v)φσ(u, v)dudv and σ1 > σ2,

sn(σ1)− sn(σ2) =
mn∑
i=1

mn∑
j=1

dfnid
g
nj

∫∫
I(u ≥ cni)I(v ≥ cnj)[φσ1(u, v)− φσ2(u, v)]dudv

Lemma B.2 implies all summands are non-negative; to show some summands are strictly
positive, note that since f is non-constant, we can find −∞ < lf < uf < −∞ such that

lim
u↑lf

f(u) ≤ lim
u↓lf

f(u) < lim
u↑uf

f(u) ≤ lim
u↓uf

f(u).

Similarly, we can find lg < ug with the same property for g. Now, since all summands are
non-negative, the sum is made no smaller by only retaining some summands. Specifically, let
us retain only those i for which both ani and an(i−1) are in [lf , uf ] and those j for which both
anj and an(j−1) are in [lg, ug].

For such summands, by the mean value theorem, applicable owing to Lemma B.2,∫∫
I(u ≥ cni)I(v ≥ cnj)[φσ1(u, v)− φσ2(u, v)]dudv = h(σ̃, cni, cnj)

for some σ̃ between σ1 and σ2. By Lemma B.2, h is continuous and strictly positive on the
compact [σ1, σ2]× [lf , uf ]× [lg, ug], and hence attains a strictly positive infimum there, say
ε > 0. Thus,

sn(σ1)− sn(σ2) ≥ ε
∑
i

∑
j

dfnid
g
nj = ε

[∑
i

dfni

][∑
j

dgnj

]
,

where the sums are over the retained indexes, which are consecutive. Consider the first sum:
it is the sum of jumps of fn in [lf , uf ], and hence it tends to limu↑uf f(u)− limu↓lf f(u) > 0.
Similarly, the second sum tends to limv↑ug g(v)− limv↓lg g(v) > 0. Thus, we can find a c > 0
such that for all n large enough, sn(σ1)− sn(σ2) ≥ c, and the proof is completed by sending
n to infinity and applying the dominated convergence theorem – the dominating function
can be |fg|φσi ≥ |fn||hn|φσi , i = 1, 2.
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Proof of Lemma 1. By a change of variables, the fist integral is∫
g(µ1 + σ1u)φ(u)du

where φ is the standard normal density. For µ1 > µ′1,∫
g(µ1 + σ1u)φ(u)du−

∫
g(µ′1 + σ1u)φ(u)du =

∫
[g(µ1 + σ1u)− g(µ′1 + σ1u)]φ(u)du

≥ 0

since the integrand is non-negative due to g being increasing. Moreover, equality holds if and
only if g(µ1 + σ1u) = g(µ′1 + σ1u) for Lebesgue-almost every u. But since g is increasing and
non-constant, we can find a point s such that g is strictly greater on (s,∞) than on (−∞, s).
Thus, for all u such that µ′1 +σ1u < s < µ1 +σ1u, which is a set of positive Lebesgue measure
since µ1 > µ′1, it holds that g(µ1 + σ1u) > g(µ′1 + σ1u), and this proves the first claim.

To prove the second claim, make another change of variables to get that the integral is∫
g(µ1 + σ1u1)h(µ2 + σ2u2)φC(u) du,

where φC is the bivariate normal density with the covariance matrix C that has ones on
the diagonal and ρ = σ/(σ1σ2) on the off-diagonal; that is, C is the correlation matrix
corresponding to Σ. Since u1 7→ g(µ1 + σ1u1) and u2 7→ h(µ2 + σ2u2) are increasing and
non-constant because g and h are, Lemma B.3 says the integral in the last display is strictly
increasing in ρ, and from this the claim follows since σ1 and σ2 are strictly positive.

Lemma B.4. Suppose Y ∈ Rr has density

fθ(y) = |Σ|−1/2

∫
Rr

exp

[
r∑
j=1

ψ−1
j {yjwj − cj(wj)} − (w − µ)TΣ−1(w − µ)/2

]
dw

where θ = (µ,Σ) ∈ Rr × Sr+, ψ ∈ (0,∞)r, and the cj are the cumulant functions for
some, possibly different, one-parameter exponential families. Let Aj ⊆ R denote the set
of possible µj and Bj ⊆ [0,∞) the set of possible Σjj, j = 1, . . . r. Define the functions
vj : Aj ×Bj → R × (0,∞) by

vj(µj,Σjj) = [Eθ(Yj), varθ(Yj)]
T.

If the vj are injective, then the parameter θ is identifiable; that is, fθ(y) = fθ′(y) for almost
every y implies θ = θ′.

Proof. Pick arbitrary θ and θ′ and suppose fθ = fθ′ almost everywhere. Then

Eθ(Y ) =

∫
yfθ(y)dy =

∫
yfθ′(y)dy = Eθ′(Y ),
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where dy means integration with respect to the dominating measure for fθ(y). Similarly, for
j = 1, . . . , r,

varθ(Yj) =

∫ (
yj −

∫
yjfθ(y)dy

)2

fθ(y)dy =

∫ (
yj −

∫
yjfθ′(y)dy

)2

fθ′(y)dy = varθ′(Yj).

Thus, because the vj are injective, µj = µ′j and Σjj = Σ′jj for j = 1, . . . , r.
It remains to show Σij = Σ′ij for all i 6= j. To that end, first note Eθ(YiYj) = Eθ{E(YiYj |

W )} = Eθ{E(Yi | Wi)E(Yj | Wj)} = Eθ{c′i(Wi)c
′
j(Wj)} by conditional independence. More-

over, by properties of cumulant functions, c′′j (Wj) = var(Yj | Wj)/ψj > 0, so c′j is strictly
increasing, and similarly for ci. Thus, by Lemma 1 in the main text,

Σij 7→ Eθ(YiYj)

is strictly increasing. Thus, because Eθ(Yi) and Eθ(Yj) do not depend on Σij, the map
Σij 7→ covθ(YiYj) is also strictly increasing, and hence injective. Thus, since

covθ(YiYj) = covθ′(YiYj)

by the assumption that fθ = fθ′ almost everywhere, it must be that Σij = Σ′ij and this
completes the proof.

Proof of Theorem 1. We first show that distinct parameters give distinct first and second
moments of the elements of Y. To this end, recall from Example 2 that E(Yi,j) = XT

i,jβ
and var(Yi,j) = ψj + Σjj if Yi,j is normal; and if it is conditionally Poisson, then E(Yi,j) =
exp(XT

i,jβ + Σjj/2) and

E(Y 2
i,j) = E[E(Y 2

i,j | Wi)]

= E[var(Yi,j | Wi) + E(Yi,j | Wi)
2]

= E[exp(Wi)] + E[exp(2Wi)]

= exp(XT
i,jβ + Σjj/2) + exp(2XT

i,jβ + 2Σjj).

Recall also from Example 3 that, owing to Lemma 2.1, E(Yi,j) is strictly increasing in XT
i,jβ.

Thus, the first and second moments of the elements of Y corresponding to pairs (β,Σ) and
(β∗,Σ∗) are the same only if

XT
i,jβ = XT

i,jβ∗ and ψj + Σjj = ψj + Σ∗jj

for every i and j corresponding to normal responses;

exp(XT
i,jβ + Σjj/2) = exp(XT

i,jβ∗ + Σ∗jj/2) and exp(2XT
i,jβ + 2Σjj) = exp(2XT

i,jβ∗ + 2Σ∗jj)

for every i and j corresponding to conditionally Poisson responses; and XT
i,jβ = XT

i,jβ∗ for
every i and j corresponding to Bernoulli responses. Since the exponential function is invertible,
if X = [XT

1 , . . . , X
T
n ]T ∈ Rrn×p has full column rank, this can happen only if β = β∗ and

Σjj = Σ∗jj for every j. Finally, the off-diagonal elements of Σ are identifiable by Lemma 2.1
since the link functions are strictly increasing.
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C Comparison to existing software

C.1 GLMM software

We illustrate using an example. Suppose there are r conditionally Poisson-distributed
responses, each with its own intercept. Specifically, for j = 1, . . . , r and independently for
i = 1, . . . , n,

Yi,j | Wi
indep.∼ Poi(Wi,j), Wi ∼ N(β,Σ), (β,Σ) ∈ Rq × Sr++.

This model is equivalent to a generalized linear mixed model for [Y1,1, Y1,2, . . . , Yn,r]
T ∈ Rrn,

the vector of all responses, with linear predictor

η = (1n ⊗ Ir)β + U,

where the random effects vector U ∼ N(0, In ⊗ Σ). Even with these simplifications of the
model, it is not clear that common software can fit it: the Kronecker structure is supported
by neither the GLIMMIX procedure in SAS (Schabenberger, 2005) nor any of the R functions
glmer from the package lme4 (Bates et al., 2015), glmmPQL from the package MASS (Venables
and Ripley, 2002), glmmTMB from the package with the same name (Brooks et al., 2017), or
glmm from the package with the same name (Knudson et al., 2021). Some of the packages
can fit this model if Σ is constrained to be diagonal since that corresponds to including a
separate random effect for each of the observed rn responses and then constraining some of
the variances of those random effects to be equal. However, a diagonal Σ is equivalent to
assuming all responses are independent, and hence is typically not an interesting alternative.
An arguably more reasonable alternative for these data, which all of the mentioned software
packages support, is to treat Yi,1, . . . , Yi,r as observations from the same cluster and model
within-cluster dependence by including a shared random effect. That is, by considering the
linear predictor

η = (1n ⊗ Ir)β + (In ⊗ 1r)U,

where U ∼ N(0, σ2In). This implies the covariance

cov(η) = In ⊗ σ21r1
T
r ,

which is equivalent to taking Σ = σ21r1
T
r in our model. We expect that if this structure is

correct, then our method should give coefficient estimates similar to those of glmmPQL.

D A quasi-Poisson distribution

We say a response Yj has conditional quasi-Poisson moments if E(Yj | W ) = exp(Wj) and
var(Yj | W ) = ψj exp(Wj) for ψj > 0. To generate such responses, notice that if Ỹj | W is
Poisson with parameter ψ−1

j exp(Wj), then Yj = ψjỸj satisfies E(Yj | W ) = exp(Wj) and

var(Yj | W ) = var(ψjỸj | W ) = ψ2
jψ
−1
j exp(Wj) = ψj exp(Wj),

as desired. That is, conditionally quasi-Poisson responses can be generated by scaling Poisson
responses. The quasi-Poisson responses will in general not be integer-valued.
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E Computing details

E.1 Algorithm 1 details

The gradient required for implementing the accelerated projected gradient descent algorithm
can be derived as follows. Letting ri = ỹi − X̃iβ and Di = ∇2c(wi), we can write

hn(β,Σ | w1, . . . , wn) =
n∑
i=1

[
log det{DiΣDi +Di diag(ψ)}+ rTi {DiΣDi +Di diag(ψ)}−1ri

]
.

Letting Ci(Σ) = {DiΣDi +Di diag(ψ)}−1, for i = 1, . . . , n, routine calculations give

∇Σhn(β,Σ;w1, . . . , wn) =
n∑
i=1

Di

{
Ci(Σ)− Ci(Σ)rir

T
i Ci(Σ)

}
Di.

The gradient for the update of the wi are, for i = 1, . . . , n, assuming Σ−1 exists,

∇wi
log f(wi, yi; β,Σ) = yi −∇c(wi)− Σ−1(wi −XT

i β).

Initializing values can affect the final estimates of (β,Σ). For this reason, we propose a
two-step initialization approach which we find leads to good initial values. In the first step,
we run Algorithm 1 after initializing wi = 0, β = 0, and Σ = Ir under the restriction that Σ
is diagonal. Once this algorithm has converged, in the second step, we run Algorithm 1 again
by initializing (β,Σ) and the wi at their final iterates from the first step. However, we drop
the constraint that Σ is diagonal, and allow Σ to be unrestricted (i.e., Σ need not belong
to M). We also replace step 3(b) – (c) by a trust region algorithm which often converges
quickly but does not guarantee positive semi-definiteness. Once this algorithm has converged,
we use the final iterates of (β,Σ) and the wi as our initial values for Algorithm 1 under the
restriction that Σ ∈M. In terms of computing time, we found this approach is often faster
than running Algorithm 1 directly; and tends to lead to better estimates of (β,Σ). If r is
relatively large, the trust region update of Σ used to get initial values can be slow since it
requires repeatedly computing a Hessian of dimension r(r + 1)/2× r(r + 1)/2; the second
initialization step can then be skipped.

Table A shows the times to fit our model and the models assumed by glmm and glmer in
Section 5. We see that in general, our algorithm requires more time to compute than does
glmer, both of which are significantly faster than glmm.

F Additional simulation results

F.1 Additional prediction results

In this subsection we provide simulation results analogous to those in Figure 2 of the main
manuscript, but comparing mmrr and mcglm. These results can be found in Figure A. Note
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Sample size
Covariance Model 100 150 200 250 300 350 400 450 500

AR(1)
mmrr 98.2 79.1 112.1 138.6 163.8 92.6 182.2 166.5 186.1
glmm 76.0 88.9 206.6 412.9 617.0 442.1 1193.7 1623.0 2213.8
glmer 14.5 16.4 24.5 31.5 42.4 32.0 56.0 61.1 68.7

BD
mmrr 24.0 29.1 68.0 67.0 72.2 39.3 64.8 57.8 80.6
glmm 45.0 81.3 267.6 414.9 612.7 368.8 904.8 778.2 1801.8
glmer 6.3 9.6 20.3 24.6 31.4 22.9 37.7 30.8 52.8

CS
mmrr 88.7 130.4 121.2 160.9 165.2 158.4 186.7 84.9 87.6
glmm 62.7 129.3 183.4 356.8 518.5 712.2 1123.6 666.4 850.2
glmer 12.4 22.2 25.2 35.9 40.4 44.2 57.6 34.5 40.3

Table A: Median computing times (in seconds) for our method with off-diagonals of Σ
unconstrained (mmrr), independent generalized linear mixed models fit using glmm, and
clustered generalized linear models fit using glmer under the settings considered in the top
row of Figure 1 in the main article. AR(1), BD, and CS correspond to autoregressive, block
diagonal, and compound symmetric covariance structures, respectively.

mmrr and mcglm perform similarly on normal responses, but that mmrr outperforms mcglm

substantially on both Poisson and to a greater extent, Bernoulli responses. Interesingly, under
the block diagonal covariance structure, mmrr outperforms mcglm on even normal responses
to a notable degree.

F.2 Estimation of regression coefficients and covariance parameters

In this subsection we report additional simulation study results to accompany those in Section
5 of the main manuscript.

In Figure B, we present results for the competitors considered in Figure 1 of the main
manuscript in terms of mean squared estimation error of β. These results largely agree with
those when using relative mean squared prediction error as a performance metric: mmrr

tends to outperform all competitors with mmrr-Ind and glmm-Ind performing similarly. In
Figure C, we aggregate results by response type and see that components of β corresponding
to Bernoulli responses are estimated worst. Note that these results are presented on the
log-scale: were they left on their original scale, differences between mmrr and mmrr-Ind would
appear much more substantial for Bernoulli responses (with mmrr significantly outperforming
mmrr-Ind) and much less substantial for Poisson and Normal.

We now turn our attention to the estimation of Σ. We compare mmrr-Ind and mmrr in
terms of their mean squared error for the diagonal entries of Σ. Since both methods constrain
the diagonal entries of Σ to be equal to one for Bernoulli responses, we only present results
averaged over all normal responses and Poisson responses, separately. In Figure D, we see that
mmrr and mmrr-Ind differ primarily in their estimation of the Poisson variance. In every case,
it appears that mmrr outperforms mmrr-Ind in terms of variance estimation for the Poisson
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Figure A: Average relative squared prediction errors. Top: ρ = 0.9 and pj = 5 for j = 1, . . . , 9.
Middle: n = 200 and ρ = 0.9. Bottom n = 200 and pj = 5 for j = 1, . . . , 9. mmrr is the
proposed method and mcglm is the method of Bonat and Jørgensen (2016).

components of Y | W. In Figure E, we present average mean squared errors for estimating
off-diagonal blocks of Σ using mmrr. The 3× 3 off-diagonal black corresponding to Normal
and Poisson response covariance is estimated best, whereas both blocks including Bernoulli
responses are estimated more poorly. Encouragingly, we see that as the correlation parameter
ρ increases, we more accurately estimate all off-diagonal blocks (e.g., see the bottom row of
Figure E).

F.3 Bernoulli responses

In this subsection, we perform another simulation study to examine how our method performs
with a large number of Bernoulli responses. Data are generated in the same manner as in
Section 5.2, except with a single normal response and eight Bernoulli response variables.
Results are displayed in Figure F. As before, we observe that as ρ increases from 0.5 to 0.95,
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Figure B: Average mean squared estimation error of β. Top: ρ = 0.9 and pj = 5 for
j = 1, . . . , 9. Middle: n = 200 and ρ = 0.9. Bottom: n = 200 and pj = 5 for j = 1, . . . , 9.

the difference between joint and separate modeling becomes more apparent. Notably, the
relative mean squared prediction error for the single normal response variable improves more
dramatically under both the autoregressive and compound symmetric covariance structures.
Under the block diagonal covariance, the differences are less apparent. This agrees with
intuition as under the block diagonal covariance structure, the normal response is only
correlated with two of the Bernoulli responses, whereas with the other structures it is
correlated with all eight Bernoulli responses. Together with the results in the main article,
these results suggest that substantial efficiency gains can be achieved using our method for
joint modeling of mixed-type responses – even in the case where most response variables are
binary.
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Figure C: Average mean squared estimation error (on the log-scale) of β aggregated by type.
Top: ρ = 0.9 and pj = 5 for j = 1, . . . , 9. Middle: n = 200 and ρ = 0.9. Bottom: n = 200
and pj = 5 for j = 1, . . . , 9.

F.4 Comparison to separate GLMs

First, we present simulation study results identical to those from Figure 1 of the main
manuscript, but with separate GLMs also included as a competitor. These results are displayed
in Figure G. Separate GLMs perform substantially worse than all other competitors in every
scenario considered. The performances of the alternative methods, though indistinguishable
here, are exactly as in Figure 1 of the main manuscript.

G Osteoarthritis initiative data analysis

In this section, we analyze data collected through the Osteoarthritis Initiative (OAI), a
prospective observational study of knee osteoarthritis progression (nda.nih.gov/oai/). Fol-
lowing McCulloch (2008), who kindly shared the data, we model two outcome variables:
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Figure D: Average mean squared estimation error for the 1st–3rd (normal) and 7th–9th
(Poisson) diagonal elements of Σ. Top: ρ = 0.9 and pj = 5 for j = 1, . . . , 9. Middle: n = 200
and ρ = 0.9. Bottom: n = 200 and pj = 5 for j = 1, . . . , 9.

Western Ontario and McMaster Univerities disability score (WOMAC), and the number of
days of work missed in the three months proceeding data collection. The WOMAC scores are
modelled as a normal random variable after adding one and performing a log-transformation;
whereas the number of days of work missed are treated as quasi-Poisson random variables.
To model these data, we consider BMI, age, and sex as predictors. As in the fertility data
analysis, we set ψj = 10−2 for the normally distributed response and ψj = 10−1 for the
quasi-Poisson response. The goal of our analysis was to test for the effect of each of the
three predictors on both responses simultaneously. Our analysis included only those subjects
who had no missingness in either response variables or predictors, so that n = 1602. Fitting
the full model to the data, we obtain the coefficient estimates listed in Table B. Based on
the results, we would conclude that both BMI and Sex are significant predictors for both
response variables, while Age did not reach the .05 significance cutoff.
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Figure E: Average mean squared estimation error for off-diagonal blocks of Σ. Top: ρ = 0.9
and pj = 5 for j = 1, . . . , 9. Middle: n = 200 and ρ = 0.9. Bottom: n = 200 and pj = 5 for
j = 1, . . . , 9.
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Figure F: Average relative squared prediction errors over 500 independent replications as the
correlation parameter ρ varies with n = 200 and pj = 5 for j = 1, 2, . . . , 9.

Coefficient WOMAC score Days missed p-value
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Table B: Regression coefficient estimates (i.e., B̂) for the three predictors and two response
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the corresponding row of B is entirely zero.
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Figure G: Average relative squared prediction errors. Top: ρ = 0.9 and pj = 5 for j = 1, . . . , 9.
Middle: n = 200 and ρ = 0.9. Bottom: n = 200 and pj = 5 for j = 1, . . . , 9.
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