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Abstract

Exposure to environmental pollutants during the gestational period can signifi-
cantly impact infant health outcomes, such as birth weight and neurological develop-
ment. Identifying critical windows of susceptibility, which are specific periods during
pregnancy when exposure has the most profound effects, is essential for developing
targeted interventions. Distributed lag models (DLMs) are widely used in environ-
mental epidemiology to analyze the temporal patterns of exposure and their impact
on health outcomes. However, traditional DLMs focus on modeling the conditional
mean, which may fail to capture heterogeneity in the relationship between predictors
and the outcome. Moreover, when modeling the distribution of health outcomes like
gestational birthweight, it is the extreme quantiles that are of most clinical relevance.
We introduce two new quantile distributed lag model (QDLM) estimators designed to
address the limitations of existing methods by leveraging smoothness and shape con-
straints, such as unimodality and concavity, to enhance interpretability and efficiency.
We apply our QDLM estimators to the Colorado birth cohort data, demonstrating
their effectiveness in identifying critical windows of susceptibility and informing public
health interventions.

Keywords: Quantile regression, distributed lag models, shape-constrained regression,
environmental epidemiology

1 Introduction

The gestational period is a critical developmental stage where exposure to environmental
pollutants can profoundly affect birth and children’s health outcomes. During pregnancy,
the fetus undergoes rapid growth and development, making it particularly vulnerable to en-
vironmental influences. Increased exposure to pollutants during pregnancy has been linked
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to adverse outcomes such as decreased birth weight, increased risk of asthma, preterm birth,
and altered neurological development (Bosetti et al., 2010; Stieb et al., 2012; Jacobs et al.,
2017). Common pollutants include particulate matter, heavy metals, and various organic
compounds, which can interfere with normal biological processes. Recent studies have fo-
cused on leveraging high-resolution exposure data collected throughout pregnancy to identify
critical periods of vulnerability, which are specific times during development when exposure
can impact future health outcomes (Wright, 2017). Understanding these so-called “critical
windows” can help in developing targeted interventions to mitigate the adverse effects of
environmental exposures.

The distributed lag model (DLM) is widely used in environmental epidemiology for mod-
eling the relationship between health outcomes and time-dependent exposure to environ-
mental pollutants. A DLM regresses the outcome on repeated measures of exposures over
a preceding time period, capturing the temporal pattern of exposure and its impact on
health. This model is particularly useful for understanding how exposures at different times
during pregnancy affect health outcomes such as birth weight (Schwartz, 2000; Zanobetti
et al., 2000). Typically, DLMs are constrained so that the exposure effects vary smoothly
over time to reduce the effects of multicollinearity in the repeated measures of exposures.
Compared to using exposures averaged over a prespecified time window, such as trimester
average exposures, a constrained DLM can reduce estimation error and improve recovery of
critical windows (Wilson et al., 2017b). Some recent work on distributed lag modeling has
focused on the estimation of nonlinear exposure-time-response functions, allowing for more
flexible modeling of complex relationships (Gasparrini, 2014; Gasparrini et al., 2017; Mork
and Wilson, 2023). A recent focus in environmental health research has been on mixtures
of exposures, or simultaneous exposure to multiple pollutants (Joubert et al., 2022). There
are several recently proposed methods for identifying critical windows to a mixture (Warren
et al., 2022; Wilson et al., 2022; Mork and Wilson, 2023; Antonelli et al., 2024). All of these
methods consider mean regression.

While existing methods can work well for modeling the conditional expectation of the out-
come, in environmental epidemiology, investigators are often interested in modeling specific
quantiles of the outcome as a function of covariates. Moreover, outcomes are often het-
eroscedastic and can exhibit skewness, in which case least squares-based estimators of the
conditional mean may perform poorly. Quantile regression addresses these issues by allowing
one to model conditional quantiles of the outcome, which may provide a more comprehen-
sive perspective of the effects of environmental exposures (Koenker and Bassett Jr, 1978;
Yu et al., 2003). For instance, quantile regression can reveal how exposure impacts not only
the median birth weight but also the lower and upper tails of the birth weight distribution,
which are of greatest clinical concern. Moreover, a quantile distributed lag modes (QDLM)
may capture the heterogeneity in the effects of exposures over different quantiles of the out-
come distribution, providing insights into how exposures might affect individuals differently
depending on their position within the outcome distribution (Wang et al., 2023). This makes
quantile regression a powerful tool for environmental health studies, where understanding
the full range of potential impacts is crucial.
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In this paper, we introduce two new estimators of the QDLM. These estimators exploit
common assumptions about distributed lag models: namely, that effects are smooth across
time. To enhance interpretability, we also consider more restrictive shape constraints that
are plausible in environmental applications. As we describe in a later section, these shape
constraints are especially natural in our birth weight modeling application, but difficult
to impose in a QDLM. We use the aforementioned modeling approaches to estimate the
time varying health effects of multiple environmental exposures on gestational birth weight
in a cohort of births in Colorado, USA. Quantile regression is particularly useful for this
application as it is the extremes of the outcome—particularly the lower quantiles—that
are of utmost importance due to the negative consequences of very low gestational birth
weight. Existing methods designed for mean regression are thus insufficient for modeling
how exposures affect the lower quantiles of gestational birth weight.

2 Quantile distributed lag model

We focus on modeling the conditional quantiles of the response variable Y as a function of
both time-dependent and time-invariant covariates. Specifically, for a given quantile τ ∈
(0, 1), our goal is to model the τ -th conditional quantile, qτ , of Y given the entire observed
process of K time-dependent predictors X(·) = (X1(·), . . . Xk(·))⊤ ∈ RK at T discrete time
points, and Z ∈ Rp. By definition, Pr{Y ≤ qτ (Y | X(·),Z) | X(·),Z} = τ. We assume the
QDLM

qτ (Y | X(·),Z) =
K∑
k=1

T∑
m=1

Xk(tm)β∗k(tm) + Z⊤γ∗, (1)

where Xk(tm) is the value of the kth exposure at time tm and β∗k(tm) is the regression
coefficient for the kth exposure at time tm for k ∈ [K] and m ∈ [T ]. Additionally, γ∗ ∈ Rp

are the regression coefficients for the time-invariant covariates Z. We assume that each
exposure is measured at the same time points t1, . . . , tT to simplify our descriptions: we
discuss how our method can handle distinct time points in a later section.

To simplify the notation, redefine X ∈ RK×T and β∗ ∈ RK×T be a matrices with (k,m)th
entries Xk(tm) and β∗k(tm), respectively. With this notation, we can write (1) more com-
pactly as

qτ (Y | X,Z) = tr(X⊤β∗) + Z⊤γ∗, (2)

where tr(·) is the operator that sums the diagonal elements of its matrix-valued argument.
Denote the kth row of β∗ as β∗k = (β∗k(t1), . . . , β∗k(tT ))

⊤ ∈ RT where β∗k(tm) is the effect of
the kth exposure at time tm on the τth quantile of the response. For simplicity of notation,
the dependence of the β∗ and γ∗ on τ is omitted.

The goal is to estimate the unknown parameters β∗ and γ∗. In our motivating application—
modeling the effect of pollutants on birthweight—the signal to noise ratio is often low and
the correlation among exposures is very high. In such settings, it is often beneficial to im-
pose structural constraints on the estimated coefficients in order to improve efficiency and
interpretability. For example, in previous work on quantile distributed lag modeling, time-
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dependent effects were estimated using splines to achieve smoothness of the estimated coef-
ficients over time. Specifically, Wang et al. (2023) approximated

∑K
k=1

∑T
m=1 β∗k(tm)Xk(tm)

using B-splines.
In this work, we estimate the coefficients β∗ directly. Our estimator is motivated partly

from a functional data perspective. Consider, for a moment, the functional version of our
(discrete) QDLM given by

qfτ (Y | X(·),Z) =
K∑
k=1

∫ V

0

Xk(t)β
f
∗k(t)dt+ Z⊤γ∗,

where here, βf
∗k(t) is a smooth function over time t ∈ [0, V ]. Often, when estimating functions

like βf
∗ , it is natural to impose shape constraints, such as concavity (convexity) or unimodality

(Ghosal et al., 2023). In the context of our motivating data analysis, the concavity of βf
∗k(t) is

especially natural, as it indicates that the kth exposure’s effect gradually increases, peaks at
some point during pregnancy, then gradually decreases in a structured way. Unimodality is
less restrictive than concavity, requiring only a single extremum for βf

∗k(·) and monotonicity
about this extremum. If the extremum is a maximum, it can be interpreted similarly: the
kth exposure’s effect first increases, peaks mid-pregnancy, then decreases. However, the
changes in effects before and after the peak are less restrictive compared to concavity. These
shape constraints enhance interpretability. For example, if the function βf

∗k(·) is concave or
unimodal, then we can infer that there is a time period in which exposure to a pollutant is
most harmful. In contrast, if βf

∗k(t) fluctuates across time t, it becomes more challenging to
describe the effect of pollutant k on the quantile of the outcome.

Borrowing inspiration from the functional model under shape constraints, to fit (2), we
make two key assumptions. First, we assume that the β∗k(·) are smooth over time (i.e.,
β∗k(tm) is similar to β∗k(tm′) when tm is close to tm′). This assumption is consistent with the
smoothness of βf

∗k(t) for t ∈ [0, V ]. Secondly, we assume that the β∗k are either (i) unimodal
or (ii) concave, or can be well approximated by a unimodal or concave function. To achieve
concavity of the kth exposure’s effect under the discrete model (2), with equally spaced time
points, it would require that β∗k(tm) + β∗k(tm+2) ≤ 2β∗k(tm+1). For the remainder of this
and subsequent sections, we will refer to assumption (ii) as concavity, though convexity can
be achieved by flipping the sign of the corresponding exposure. Similarly, when describing
a unimodal function, we will assume its extremum is a maximum for ease of exposition. We
will propose separate estimators for (i) and (ii) under the smoothness assumption, both of
which we describe in the next section.

3 Smooth and shape-constrained QDLM estimators

3.1 Overview

To understand how we can impose structural constraints in the discrete model, let us first
consider the (idealized) case that we know a priori that M∗k = argmaxm∈[T ] β∗k(tm) for each
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k ∈ [K], and that β∗k(t) is unimodal. Here, M∗k ∈ [T ] for each k ∈ [K]. Suppose we
have observed triplets {yi,Xi,Zi}ni=1 where yi ∈ R is the ith subject’s observed response,
Xi ∈ RK×T has (k,m)th entry being the ith subject’s exposure to the kth pollutant at time
tm, and Zi ∈ Rp is the ith subject’s covariates. Let ρτ (a) = a{τ − 1(a < 0)} be the check
loss function for the τth quantile evaluated at a ∈ R. Then, to fit a smooth and unimodal
distributed lag regression model, we could use the constrained estimator

argmin
β,γ

n∑
i=1

ρτ
{
yi − tr(X⊤

i β)− Z⊤
i γ

}
subject to

K∑
k=1

∥D(v)βk∥22 ≤ λ0, (3)

βk(tm) ≤ βk(tm+1) for m ∈ [M∗k − 1], βk(tm) ≥ βk(tm+1) for m ∈ [T ] \ [M∗k − 1], k ∈ [K],

where λ0 > 0 is a user specified tuning parameter, ∥ · ∥2 is the Euclidean norm, and D(v) ∈
R(T−v)×T is a discrete difference operator of order v (Tibshirani, 2014). In particular,

D(1) =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...
0 0 0 · · · 1 −1

 , D(v+1) = D
(1)
T−vD

(v), v ≥ 2,

where D
(1)
T−v ∈ R(T−v−1)×(T−v) is the version of D(1) ∈ R(T−1)×T above with T replaced with

T − v. Therefore, in the criterion (3), the tuning parameter λ0 controls the smoothness of

the β̂k across the T time points. If v = 1, for example, then the solution to (3) will satisfy∑K
k=1

∑T−1
m=1{β̂k(tm)− β̂k(tm+1)}2 ≤ λ0.

While (3) is well-motivated, there are two challenges to its use in practice. First, the
M∗1, . . . ,M∗K will, in general, not be known in practice: these must be estimated from the
data. Second, while some β∗k may have a unimodal shape, we want to allow for violations of
unimodality or monotonicity. To borrow phrasing from Tibshirani et al. (2011), we want to
allow for “nearly” unimodal estimates with the degree of unimodality and monotonicity de-
termined by the data. To this end, define the function |D(v)βk|+ =

∑T−v
j=1 max{β⊤

k [D
(v)]j, 0}

where [D(v)]j ∈ RT is the jth row of D(v). For example, |D(1)βk|+ =
∑T−1

m=1max{βk(tm) −
βk(tm+1), 0}. Define also |D(v)βk|− =

∑T−v
j=1 max{−β⊤

k [D
(v)]j, 0}. Finally, define

h(v)(βk;Mk) = |D(v)
Mk

βk,1:Mk
|+ + |D(v)

T−Mk+1βk,Mk:T
|−, (4)

where βk,a:b = (βk(ta), . . . , βk(tb))
⊤ ∈ Rb−a+1.

3.2 Nearly-unimodal quantile distributed lag estimator

If we knew the modes M∗1, . . . ,M∗K a priori, we could rewrite the monotonicity constraints
from (3) in terms of the function h, defined in (4). Notice, βk(tm) ≤ βk(tm+1) for m ∈
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[M∗k − 1] if and only if |D(1)
M∗k

βk,1:M∗k
|+ = 0 . Therefore, (3) is equivalent to

argmin
β,γ

n∑
i=1

ρτ
{
yi − tr(X⊤

i β)− Z⊤
i γ

}
(5)

subject to
K∑
k=1

∥D(v)βk∥22 ≤ λ0, h(1)(βk;M∗k) = 0, k ∈ [K].

If we replace h(1)(βk;M∗k) = 0 with h(1)(βk;M∗k) ≤ c for a positive c, we can allow for
unimodality or monotonicity to be violated, so our estimator can be “nearly-unimodal”.
Clearly, if h(1)(β̂k;M∗k) > 0, then unimodality about β̂k,M∗k

is violated by β̂k.
With these ideas in mind, we propose to estimate β∗ under smoothness and nearly-

unimodal constraints by solving a penalized version of (5)

argmin
β,γ,{Mk}Kk=1

[
1

n

n∑
i=1

ρτ
{
yi − tr(X⊤

i β)− Z⊤
i γ

}
+ λ1

K∑
k=1

h(1)(βk;Mk) + λ2

K∑
k=1

∥D(v)βk∥22

]
(6)

for user specified tuning parameters λ1 ≥ 0 and λ2 > 0. To simplify matters, we will take
v = 2 in the final term of for the remainder of the article. The criterion (6) differs from (5)
in that both (i) unimodality is not enforced strictly, and (ii) the Mk ∈ [T ] are treated as
optimization variables. We call the pair of arguments minimizing (6) with respect to (β,γ)
the nearly-unimodal estimator of (β∗,γ∗). It is important to note for computation that with
the Mk fixed, the optimization problem in (6)—with respect to γ and β—is convex. With
the γ and β fixed, the optimization with respect to the Mk is discontinuous, but can be
solved via a simple exhaustive grid search, as we discuss later.

The two penalties in (6) serve different purposes. For example, with λ1 large and λ2 = 0,

the solution β̂k must be monotonic on either side of its M̂k-th entry, but there may be large

jumps (e.g., β̂k(tm) − β̂k(tm+1) for m ≥ M̂k may be arbitrarily large). By taking λ2 > 0

sufficiently large, the solution must also be relatively smooth across time, i.e., |β̂k(tm) −
β̂k(tm+1)| < ϵ for all m ∈ [T ] for some ϵ > 0. Conversely, by taking λ1 = 0, the solution will
be smooth across time, but will not be unimodal. By selecting both λ1 and λ2 using cross-
validation, we allow the data to determine the degree to which smoothness and unimodality
improve the model fit.

While we have thus far focused on the assumption that β∗k(t1) ≤ β∗k(t2) ≤ · · · ≤ β∗k(tMk
)

and β∗k(tMk
) ≥ · · · ≥ β∗k(tT ), our method can easily accommodate the assumption that

β∗k(t1) ≥ β∗k(t2) ≥ · · · ≥ β∗k(tMk
) and β∗k(tMk

) ≤ · · · ≤ β∗k(tT ): this is achieved by simply
flipping the sign of the corresponding exposure. In applications with a reasonably small
number of exposures K, it is feasible to try all possible combinations in cross-validation,
though we expect in most applications, prior knowledge will determine which assumptions
are reasonable.

In practice, we use a slightly modified version of (6) to simplify computation. This version
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of our method replaces h(1)(βk;Mk) with

h
(1)
(βk;Mk) = |D(v)

Mk
βk,1:Mk

|+ + |D(v)
T−Mk

βk,(Mk+1):T |−.

Compared to h(1), h
(1)

omits βk,Mk
from the second term in the penalty. Thus, Mk is either

the mode, or Mk+1 is the mode. Practically speaking, this has no effect on our fitted model
as when the tuning parameter λ1 is large, our estimator still enforces unimodality. As we

will discuss in a later section, however, by defining h
(1)

as the sum of two terms that depend
on distinct subvectors of βk, computation is greatly simplified.

3.3 Nearly-concave quantile distributed lag estimator

In settings where it may be appropriate to assume concavity of the β∗k, we can utilize
penalties similar to (6). Recall that β∗k is concave if 2β∗k(tm+1) ≥ β∗k(tm) + β∗k(tm+2) for
all m ∈ [T − 2]. Expressed in terms of the functions we defined before, β∗k is concave if
|D(2)β∗k|+ =

∑T−2
m=1max{β∗k(tm)−2β∗k(tm+1)+β∗k(tm+2), 0} = 0, i.e., β∗k(tm)−2β∗k(tm+1)+

β∗k(tm+2) ≤ 0 for all m ∈ [T − 2]. Therefore if, for example, we wanted to require concavity,
we could use (5) with the constraint h(1)(βk;Mk) = 0 replaced with |D(2)βk|+ = 0. To
achieve nearly-concave estimates, we can relax this constraint, allowing |D(2)βk|+ ≤ c for

some positive constant c. Like the nearly-unimodal penalty, if |D(2)β̂k|+ > 0, then βk is not
concave.

Based on these ideas, we propose the nearly-concave quantile distributed lag estimator

argmin
β,γ

[
1

n

n∑
i=1

ρτ
{
yi − tr(X⊤

i β)− Z⊤
i γ

}
+ λ1

K∑
k=1

|D(2)βk|+ + λ2

K∑
k=1

∥D(2)βk∥22

]
(7)

where λ1 ≥ 0 and λ2 > 0 are user-specified tuning parameters. Compared to (6), (7) does
not require that we estimate the Mk explicitly, and is the solution to a convex optimization
problem. Due to this, (7) is generally faster to compute than (6).

We illustrate the effects of the two tuning parameters, λ1 and λ2, on the nearly-unimodal
and nearly-concave quantile distributed lag estimators in Figure 1 and 2. Here we generated
data from the quantile regression model with K = 1 and T = 30. In these examples, we
observe that with a fixed λ2, increasing λ1 enforces a stronger unimodal constraint on the
nearly-unimodal estimator and a stronger concave constraint on the nearly-concave estima-
tor. This is evident from the more pronounced unimodality as λ1 increases. Conversely,
with a fixed λ1, increasing λ2 results in smoother estimates across time for both the nearly-
unimodal and nearly-concave estimators. This smoothness is achieved by reducing fluctu-
ations in the estimated curves, demonstrating the role of λ2 in controlling the smoothness
of the solution. Together, tuning λ1 and λ2 allows for flexibility in shaping the estimated
curves, balancing between the shape constraints and smoothness. By selecting λ1 and λ2

using cross-validation, we allow the best balance to be determined by the data.
Note that if the time points of measurement t1, . . . , tT differed across exposures, our
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Figure 1: Effects of the tuning parameters λ1 and λ2 on the nearly-unimodal quantile dis-
tributed lag estimator (6). The true β∗ is shown in black dots, and β̂∗ is represented by
curves.

method could still be applied straightforwardly. In this case, the D(v) matrices for each
k ∈ [K] would need to be chosen in accordance with the number of time points. Moreover,
if time points are not equally spaced, the rows of the corresponding D can be modified
according to their spacing (e.g., by imposing a less harsh penalty on the difference between
coefficients whose time points are farther apart).

3.4 Related work

Regularized quantile regression has been well-studied in the literature (e.g., see Chapter 15
of Koenker et al., 2017, and references therein). For example, Gu et al. (2018) proposed a
variation of the alternating direction method of multipliers (ADMM) algorithm (Boyd et al.,
2011) for computing elastic-net penalized quantile regression estimators. To both alleviate
the unhelpful bias often induced by convex penalties and handle the nondifferentiability of
the check loss, Tan et al. (2022) developed a smooth approximation to the check loss to be
used with folded-concave penalization. Brantley et al. (2020) studied quantile trend filtering,
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Figure 2: Effects of the tuning parameters λ1 and λ2 on the nearly-concave quantile dis-
tributed lag estimator (7). The true β∗ is shown in black dots, and β̂∗ is represented by
curves.

where they developed an efficient algorithm to compute

argmin
b∈RT

{
1

2

T∑
i=1

ρτ{u(ti)− b(ti)}+ λ0∥D(1)b∥1

}
,

which can provide a smooth approximation to the τth quantile of the sequence u(t1), . . . , u(tT )
for appropriately selected tuning parameter λ0 > 0.

In distributed lag generalized linear models, it is common to assume smoothness of the
effects across time. Smoothness is often achieved using penalized splines (Zanobetti et al.,
2000), Gaussian processes (Warren et al., 2012), or utilizing ridge-type penalties on differ-
ences between coefficients corresponding to successive time points (Obermeier et al., 2015).
Chen et al. (2018) consider multiple ways—some Bayesian—to impose smoothness. To the
best of our knowledge, none of these methods impose shape constraints, nor do these methods
easily extend to the quantile distributed lag case.

From a methodological perspective, the work most closely related to our own is that on
“nearly-isotonic” trend filtering (Tibshirani et al., 2011). Tibshirani et al. (2011) considered
the problem of approximating a sequence u(t1), . . . , u(tT ) with a nearly-monotonically in-

9



creasing sequence. Specifically, they proposed to approximate the sequence u(t1), . . . , u(tT )
using

argmin
b∈RT

{
1

2

T∑
i=1

{u(ti)− b(ti)}2 + λ0|D(1)b|+
}
. (8)

They also consider approximating the sequence with a nearly-convex function by replacing
the penalty in (8) with λ0|D(2)b|−. Tibshirani et al. (2011) proposed an efficient algorithm
for computing the solution path to (8), but did not consider application to quantile trend
filtering, did not consider the case with predictors, nor did they consider estimating unimodal
functions.

4 Computation

4.1 Overview

The optimization problems for the nearly-unimodal estimator (6) and the nearly-concave
estimator (7) require different approaches due to their distinct sets of optimization variables.
The optimization problem (6) is nonconvex due to the discontinuity of the unimodal penalty

term h
(1)
(βk;Mk) with respect to Mk. To tackle this nonconvex optimization problem, we

propose using a blockwise coordinate descent algorithm. The key idea is to alternately
update the two sets of parameters (β,γ) and {Mk}Kk=1 until convergence. Specifically, we
use the following blockwise descent scheme.

Algorithm 1 Computing the nearly-unimodal quantile distributed lag estimator

0. Initialize β and γ

1. Fix β and γ, and update {Mk}Kk=1

2. Fix {Mk}Kk=1, and update β and γ

3. Repeat Steps 1 and 2 until the algorithm converges

Fortunately, updating {Mk}Kk=1 in Step 1 is simple because each Mk takes a value from
the finite set of integers [T ]. With β and γ fixed at β(t) and γ(t), the global minimizer of
the objective function from (6) with respect to Mk, is given by

M
(t+1)
k ∈ argmin

m∈[T ]

h
(1)
(β

(t)
k ;m).

Since m only takes a finite number of values, we can evaluate h
(1)
(β

(t)
k ,m) for each possible

value of m ∈ [T ] and choose the one that yields the smallest value. In the (rare) case of ties,
one can randomly choose an element from the set of minimizers.
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The optimization problem for Step 2 of Algorithm 1 and for computing (7) have similar
structures, so we propose an algorithm that can be used to solve both. Both problems can
be written as

argmin
β,γ

[
1

n

n∑
i=1

ρτ{yi − tr(X⊤
i β)− Z⊤

i γ}+ λ1g(β) + λ2

K∑
k=1

∥D(2)βk∥2
]
, (9)

where g(β) =
∑K

k=1 h
(1)
(βk,Mk) for the nearly-unimodal estimator, and g(β) =

∑K
k=1 |D

(2)βk|+
for the nearly-concave estimator. In the next subsection, we propose an ADMM algorithm
to compute (9) with either g.

To simplify notation in the following subsection, let Z = (Z1, . . . ,Zn)
⊤ ∈ Rn×p,y =

(y1, . . . , yn)
⊤ ∈ Rn,B = vec(β) ∈ RTK , and X = (vec(X1), . . . , vec(Xn))

⊤ ∈ Rn×TK , where
vec is the operator that stacks the columns of its matrix-valued argument.

4.2 Prox-linear ADMM algorithm for (9)

Solving (9) is difficult because the quantile loss function and g are nondifferentiable. The
ADMM algorithm allows us to separate the quantile loss and penalties so that each can be
dealt with separately through their so-called proximal operators. The proximal operator of
a function q is given by

Proxq(v) = argmin
u

{
1

2
∥u− v∥22 + q(u)

}
.

If q is a closed proper convex function, its proximal operator is unique.
To see how we can apply the ADMM algorithm, notice that the optimization problem in

(9) can be expressed as the constrained problem

minimize
r,β,γ

{
1

n

n∑
i=1

ρτ (ri) + λ1g(β) + λ2∥DB∥22

}
subject to r = y −XB −Zγ, (10)

where D = BlockDiag({D(2)}Kk=1), so that
∑K

k=1 ∥D
(2)βk∥22 = ∥DB∥22. The ADMM al-

gorithm solves (10) by combining dual ascent with the method of multipliers. Let f(r) =
1
n

∑n
i=1 ρτ (ri), and ρ > 0 be a fixed step size. The augmented Lagrangian associated with

(10) is
Lρ(r,β,γ,u) =f(r) + λ1g(β) + λ2∥DB∥22

− ⟨u,XB + Zγ + r − y⟩+ ρ

2
∥XB + Zγ + r − y∥22,

where u ∈ Rn is a dual variable. We use a modified version of the ADMM algorithm,
sometimes called a “prox-linear” (Deng and Yin, 2016) or “proximal” ADMM algorithm
(Gu et al., 2018). The prox-linear ADMM algorithm is especially useful when subproblems
of the standard ADMM algorithm require minimizing a penalized least squares criterion.
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This algorithm has (t+ 1)th iterates

β(t+1),γ(t+1) = argmin
β,γ

{
Lρ(r

(t),β,γ,u(t)) +
1

2
∥B −B(t)∥2S

}
(11)

r(t+1) = argmin
r

{
Lρ(r,β

(t+1),γ(t+1),u(t))
}

(12)

u(t+1) = u(t) − ρ(XB(t+1) + Zγ(t+1) + r(t+1) − y) (13)

where S is a positive semidefinite matrix to be defined shortly, and ∥v∥2S = ⟨v,Sv⟩ is the
seminorm induced by the semi-inner product defined via S. The standard ADMM algorithm
(Chapter 3 Boyd et al., 2011) replaces (11) with argminβ,γ Lρ(r

(t),β,γ,u(t)). Because of
this, the iterate defined in (11) can be thought of as an approximation to the corresponding
update from the vanilla ADMM algorithm. By incorporating the quadratic term ∥B−B(t)∥2S,
the update for β in (11) can be transformed into solving two independent nearly-isotonic
regression problems for the nearly-unimodal estimator and solving a single nearly-concave
regression problem for the nearly-concave estimator. Steps (12) and (13) follow the vanilla
ADMM algorithm.

To tackle (11), notice that after a bit of algebra, we can write

Lρ(r
(t),β,γ,u(t)) = λ1g(β) +

ρ

2
∥X̃B + Z̃γ + r̃(t) − ỹ − ρ−1ũ(t)∥22 + f(r(t))

where X̃ = (X⊤,
√

2λ2

ρ
D⊤)⊤ ∈ R(n+KT−2K)×KT , Z̃ = (Z⊤,0)⊤ ∈ R(n+KT−2K)×p, r̃(t) =

(r(t)⊤,0⊤)⊤ ∈ Rn+KT−2K , ỹ = (y⊤,0⊤)⊤ ∈ Rn+KT−2K , ũ(t) = (u(t)⊤,0⊤)⊤ ∈ Rn+KT−2K , and
f(r(t)) is constant with respect to (β,γ). Then for fixed β, the minimizer of Lρ(r

(t),β,γ,u(t))
with respect to γ is given by

γ̂(β) = (Z̃⊤Z̃)−1Z̃⊤(ỹ − r̃(t) + ρ−1ũ(t) − X̃B). (14)

Plugging γ̂(β) back into Lρ(r
(t),β,γ,u(t)), we have

Lρ(r
(t),β, γ̂(β),u(t)) = λ1g(β) +

ρ

2
∥X̃ Z̃B − t̄

(t)∥22 + f(r(t))

where X̃ Z̃ = (In+KT−2K − PZ̃)X̃, t̄
(t)

= (In+KT−2K − PZ̃)(ỹ − r̃(t) + ρ−1ũ(t)) and PZ̃ =

Z̃(Z̃⊤Z̃)−1Z̃⊤.

Now, we are ready to derive the update for β. Defining S = ρ(ηIKT −X̃
⊤
Z̃X̃ Z̃), with η ∈

12



R fixed at a value greater than or equal to the largest eigenvalue of X̃
⊤
Z̃X̃ Z̃, we have

β(t+1) = argmin
β∈RK×T

{
λ1g(β) +

ρ

2
∥X̃ Z̃B − t̄

(t)∥22 +
1

2
∥B −B(t)∥2S

}

= argmin
β∈RK×T

K∑
k=1

{
λ1

ρη
g(βk) +

1

2
∥βk − s

(t)
k ∥

2
2

}

where (s
(t)
1

⊤
, . . . , s

(t)
K

⊤
)⊤ = B(t) + η−1X̃

⊤
Z̃(t̄

(t) − X̃ Z̃B
(t)) with g(βk) = h

(1)
(βk,Mk) for

the nearly-unimodal estimator and g(βk) = |D(2)βk|+ for the nearly-concave estimator.
Restated more simply, we see that for each βk,

β
(t+1)
k = Proxλ1

ρη
g
(s

(t)
k ).

From the derivation above, one can see that our particular choice of S led to cancellations
with other quadratic terms so that the update for β reduces to the proximal operator of the
(scaled) function g. Furthermore, by taking η greater than or equal to the largest eigenvalue

of X̃
⊤
Z̃X̃ Z̃, we are ensured that Lρ(r

(t),β(t+1), γ̂(β(t+1)),u(t)) ≤ Lρ(r
(t),β(t), γ̂(β(t)),u(t)) by

the majorize-minimize principle (Lange, 2016), which is essentially for the convergence of
our algorithm.

For the nearly-unimodal estimator, the proximal operator of (λ1/ρη)g at s
(t)
k = (s

(t)
k1 , . . . , s

(t)
kT )

⊤

can be expressed as

β
(t+1)
k = argmin

b∈RT

[
1

2

Mk∑
i=1

{s(t)ki − b(ti)}2 +
λ1

ρη

Mk−1∑
i=1

max{b(ti)− b(ti+1), 0}

+
1

2

T∑
i=Mk+1

{s(t)ki − b(ti)}2 +
λ1

ρη

T−1∑
i=Mk+1

max{b(ti+1)− b(ti), 0}

]

for k ∈ [K], where b = (b(t1), . . . , b(tT ))
⊤. Thus, the update for β

(t+1)
k can be obtained by

fitting two separate nearly-isotonic regression models (8) with tuning parameter λ1/(ρη), one

for βk,1:Mk
based on (s

(t)
k1 , . . . , s

(t)
kMk

)⊤ and the other for βk,(Mk+1):T based on (s
(t)
kMk+1

, . . . , s
(t)
kT )

⊤.

For these, we use the algorithm from Tibshirani et al. (2011), which is very efficient for (8).
For the nearly-concave estimator, the update simplifies to

β
(t+1)
k = argmin

b∈RT

[
1

2

T∑
i=1

{s(t)ki − b(ti)}2 +
λ1

ρη

m−1∑
i=1

max{b(ti)− 2b(ti+1) + b(ti+2), 0}

]
(15)

for k ∈ [K], which can be computed efficiently using an ADMM sub-algorithm. We provide
this sub-algorithm in the Supplementary Materials. After we compute β(t+1), we can update
γ(t+1) using (14).
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It can be shown that r(t+1) has a closed-form solution (e.g., see Gu et al., 2018). In fact,

the update of r(t+1) = (r
(t+1)
1 , . . . , r

(t+1)
n )⊤ can be carried out component-wise in parallel. For

i ∈ [n], one can show that

r
(t+1)
i = Proxρτ/nρ

{
yi − tr(X⊤

i β
(t+1))− Z⊤

i γ
(t+1) + ρ−1u

(t)
i

}
where

Proxρτ/α(ξ) =


ξ − τ

α
, : ξ > τ/α

ξ − τ − 1

α
: ξ < (τ − 1)/α

0, : otherwise

The ADMM algorithm updates are repeated until a stopping criterion is reached. We use
the criterion based on that outlined in Section 3.3.1 of Boyd et al. (2011). Specifically, the
algorithm terminates when both the relative primal and dual residuals fall below a certain
tolerance threshold, that is,

∥XB(t) + Zγ(t) + r(t) − y∥2 ≤
√
nϵ1 + ϵ2max{∥XB(t) + Zγ(t)∥2, ∥r(t)∥2, ∥y∥2},

ρ∥W⊤(r(t) − r(t−1))∥2 ≤
√

T + pϵ1 + ϵ2∥W⊤u(t)∥2

where W = (X,Z) ∈ Rn×(p+KT ). We set ϵ1 = 10−4 and ϵ2 = 10−4. The algorithm for solving
(9) is summarized below.

Algorithm 2 Prox-linear ADMM algorithm for solving penalized quantile regression (9)

1: Initialize the algorithm with (β(0),γ(0), r(0),u(0)).
2: for t = 1, 2, . . . until convergence do
3: Update β(t+1) ← argminβ∈RK×T {λ1g(β) +

ρη
2
∥B −B(t) − η−1X̃⊤

Z̃
(t̄

(t) − X̃Z̃B
(t))∥22}

4: Update γ(t+1) ← (Z̃⊤Z̃)−1Z̃⊤(ỹ − r̃(t) + ρ−1ũ(t) − X̃B(t+1))

5: Update r
(t+1)
i ← Proxρτ/nρ{yi −X⊤

i β
(t+1) − Z⊤

i γ
(t+1) + ρ−1u

(t)
i } for each i ∈ [n]

6: Update u(t+1) ← u(t) − ρ(XB(t+1) + Zγ(t+1) + r(t+1) − y)
7: end for

We can show that the iterates of our ADMM algorithm converge to a global minimizer.
In particular,we can apply the results of Gu et al. (2018), which are stronger than standard
convergence results for the ADMM algorithm.

Remark 1. If we let θ = (B⊤,γ⊤)⊤ and define S̃ =

(
S 0
0 0

)
where S is defined as above,

we can rewrite (11) as θ(t+1) = argminθ Lρ(r
(t),θ,u(t)) + 1

2
∥θ − θ(t)∥2

S̃
. Then, by identical

arguments as in the proof Theorem 1 from Gu et al. (2018), we can show that the sequence
{(θ(t), r(t)), t = 0, 1, 2, . . . } generated by the prox-linear ADMM algorithm converges to an
optimal solution {θ⋆, r⋆} of (10), and {u(t), t = 0, 1, 2, . . . } converges to an optimal solution
u⋆ to the dual problem of (10).
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Software implementing both estimators, along with code for reproducing simulation study
results, can be downloaded from https://github.com/yjin07/smoothQDLM.

5 Inference using the wild bootstrap

In order to perform approximate inference with our estimator, we propose to use a wild
bootstrap procedure. Traditional bootstrap methods, such as the residual bootstrap or
paired bootstrap, can fail to account for the heteroscedasticity inherent in quantile regression
models. These methods may lead to biased variance estimates and invalid inference. In
contrast, the wild bootstrap, introduced by Wu (1986) and Liu (1988), and later developed
for quantile regression by Feng et al. (2011), offers a more robust alternative. Wang et al.
(2018) showed that for an adaptive L1-penalized quantile regression, the wild bootstrap of
Feng et al. (2011) can be asymptotically valid for approximating the distribution of their
penalized quantile regression estimator. We adopt the same approach as Wang et al. (2018)
in this work.

To implement the wild bootstrap for our penalized quantile regression model—focusing
on (6) for concreteness—we use the following procedure.

1. Compute β̂ and γ̂. Compute estimates β̂ and γ̂ using the penalized quantile regres-
sion model (6) with tuning parameters chosen by cross-validation.

2. Calculate residuals. Compute the residuals êi = yi − tr(X⊤
i β̂)− Z⊤

i γ̂ for i ∈ [n].

3. Generate bootstrap samples. For each i ∈ [n] independently,

(a) Generate weight wi as a realization of Wi, where Pr{Wi = 2(1 − τ)} = (1 − τ)
and Pr(Wi = −2τ) = τ .

(b) Create the bootstrap sample y⋆i = tr(X⊤
i β̂) + Z⊤

i γ̂ + wiêi

4. Refit the model to the bootstrap samples. Using the bootstrap dataset {(y⋆
i ,Xi,Zi)}ni=1,

compute bootstrap estimates β̂
boot

and γ̂boot using (6) with tuning parameters chosen
by cross-validation.

5. Repeat B times. Repeat Steps 3 and 4 B times independently to obtain B bootstrap

estimates β̂
boot

and γ̂boot.

6. Construct intervals. Based on the B bootstrap estimates, construct (1 − α)100%
confidence intervals for β∗ and γ∗ according to the bootstrap empirical distribution of

β̂ and γ̂.

There are other distributions that can be used for sampling the weights to provide asymp-
totically valid inference: see Feng et al. (2011) and Wang et al. (2018) for more details.

In practice, performing cross-validation for every bootstrap estimate can be too com-
putationally burdensome to be used in practice. Instead, we approximate the bootstrap
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distribution by, in Step 4, estimating β∗ and γ∗ on the bootstrap dataset using the tun-
ing parameter pair selected in Step 1. This allows us to solve (6) for only a single pair
of tuning parameters, as opposed to computing the entire solution path multiple times in
cross-validation. In general, we found that this had a minimal effect on our estimate of the
distribution of β̂ and γ̂.

6 Simulation studies

6.1 Data generating models

In this section, we conduct simulation studies to evaluate the performance of the proposed
methods. We compare our estimators to competitors under a variety of data generating
models. The model for the simulated data is

Yi = tr(X⊤
i β∗) + Z⊤

i γ∗ + σϵi, i ∈ [n],

where each row of Xi is a realization of NT (0,ΣX), Zi ∼ Np(0, Ip). We set ΣX = 0.8|j−k| for
all (j, k) ∈ [T ]× [T ] to create a high degree of temporal correlation in the exposures, which
is expected in practice. The values of T , p and K are fixed at 30, 5, and 6, respectively.

Two error distributions for the ϵi are used: (1) a standard normal distribution and (2)
a t-distribution with 4 degrees of freedom. We vary σ to control the signal-to-noise ratio
(SNR). Three settings for generating the β∗k are considered.

• Model A. For k ∈ [K], we generate β∗k such that β∗k(t1) ≤ β∗k(t2) ≤ · · · ≤ β∗k(tMk
) ≥

· · · ≥ β∗k(tT ). Specifically, we set β∗k(tMk
) = 5, β∗k(t1) = β∗k(tT ) = −5. The differ-

ences |β∗k(ti)−β∗k(ti+1)| = ci for i ∈ [T−1] are generated as follows: First, we generate
random values for the differences between consecutive β values on both the increasing
and decreasing segments of the sequence. These differences are scaled so that their
cumulative sum equals 10 (the total range from −5 to 5 and back to −5). The differ-
ences ci are fixed and remain the same for every replication to ensure consistency. We
set (M1,M2,M3,M4,M5,M6) = (12, 15, 18, 17, 15, 13).

• Model B. First, we generate β̃∗ according to Model A. Then, we modify the generated

coefficients to introduce sparsity by setting β∗k(tj) = β̃∗k(tj)1(|β̃∗k(tj)| > 2.5) for
k ∈ [K] and j ∈ [T ].

• Model C. For k ∈ [K], we generate β∗k such that the coefficients follow a parabolic
shape. Specifically, we first generate indices for the sequence and compute parabolic
values for each part. We divide the time points into two segments: t1 to tMk

and tMk

to tT . For the first segment (t1 to tMk
), we generate equally spaced values x from −1

to 0. For the second segment (tMk
to tT ), we generate equally spaced values x from 0

to 1. Next, we compute the parabolic values for each part: For the first segment, the
values are given by y = 5x2. For the second segment, the values are given by y = 5x2.
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We then combine the two segments to form a parabolic sequence that peaks at tMk
.

The sequence is adjusted so that the maximum value is 5 at tMk
and the minimum

value is -5 at t1 and tT . This ensures a smooth and parabolic shape peaked at Mk. We
set (M1,M2,M3,M4,M5,M6) = (12, 15, 18, 17, 15, 13).

All three models generate β∗k coefficients that are unimodal in shape. The primary
distinction lies in the structure of the sequences: while β∗k from Model A is strictly increasing
and then strictly decreasing, β∗k from Model B incorporates zeros, introducing a sparsity
aspect into the coefficients. Model C is unique in that it generates the coefficients β∗k so that
they are not only unimodal, but also strictly concave in shape. Throughout the simulation
study, we consider n ∈ {500, 750, 1000} and SNR ∈ {0.1, 0.25, 0.5}. The quantile τ is set
to be 0.25. We did not observe a substantial difference in relative performances between
methods when using other quantiles, so additional results are omitted.

6.2 Competing methods and performance metric

We compare our methods, Uni and Concave—(6) and (7), respectively—to several competi-
tors. The first competitor is the ridge-penalized quantile regression estimator, which we call
(Ridge). The second competitor is the elastic-net penalized quantile regression estimator,
(EN), defined as

argmin
β,γ

[
1

n

n∑
i=1

ρτ{yi − tr(X⊤
i β) + Z⊤

i γ}+ λ
K∑
k=1

(
1− α

2
∥βk∥22 + α∥βk∥1

)]
. (16)

The estimator Ridge is a a special case of EN with α = 0. The third competitor imposes
smoothness conditions on the distributed lag curves across time. It assumes a functional
form for the distributed lag curves β∗k = (βk(t1), βk(t2), . . . , βk(tT ))

⊤ for k ∈ [K]. That is,

βk(t) =

lk∑
j=1

fkj(t)ξkj = f⊤
k (t)ξk

wherein fkj(t) denotes basis functions, which must be determined in advance. We adopted
the approach used in Wilson et al. (2017a) to construct data-driven basis functions for dis-
tributed lags as the eigenvectors of the covariance matrix the n × T matrix of exposure k
measured over time. To obtain a smooth orthonormal basis, we use fast covariance esti-
mation (FACE) proposed by Xiao et al. (2016) to obtain the eigenfunctions of a smoothed
covariance matrix, as implemented in the R package refund (Goldsmith et al., 2023). The
selection criterion for the number of basis functions, lk, is determined by identifying the
minimum integer required such that the cumulative variance accounted for by the initial lk
eigenfunctions reaches or surpasses 90%. We denote this method as FPCA, and the coefficients
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Figure 3: Estimation errors over 50 independent replications under Model A (first row),
Model B (second row) and Model C (third row) with normal errors.

are estimated by

argmin
γ,{ξk}Kk=1

[
n∑

i=1

ρτ{yi −
K∑
k=1

T∑
t=1

f⊤
k (t)ξkxikt + z⊤

i γ}

]
, (17)

where xikt is the (k, t)th entry of the Xi. The fourth competitor is the same as FPCA but with
a ridge penalty on the coefficients ξk’s. This method is referenced as FPCA-R. A separate
validation set of size n is used to select the tuning parameters for Uni, Ridge, EN and FPCA-R.
For each setting, we generate 50 independent replications of the data and report the average
performance of the estimators. The performance is measured by the estimation error of the
coefficients, which is defined as ∥β∗ − β̂∥2.
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Figure 4: Distributed lag curves of the 1st exposure in Model A with normal errors and
different SNRs. Black lines are the true coefficients. We fix n = 750 and vary SNRs. First
row: coefficient estimates of Uni (green dotted) across 50 replications and the average (green
solid) over those replications. Second row: coefficient estimates of Concave (orange dotted)
across 50 replications and the average (orange solid) over those replications. Third row:
coefficient estimates of FPCA-R (blue dotted) across 50 replications and the average (blue
solid) over those replications.

6.3 Results

In Figure 3, we present the estimation errors under the three data generating models with
normal error distributions, varying sample sizes, and SNRs. The results with t-distribution
errors are provided in the supplementary materials. The results demonstrate that our pro-
posed estimators, Uni and Concave, perform favorably compared to the competitors across
most scenarios, exhibiting smaller estimation errors. While FPCA-R shows comparable or
even better performance than Uni when n = 500 and SNR = 0.1, Uni consistently outper-
forms FPCA-R with larger sample sizes and higher SNRs. Similarly, Concave exhibits robust
performance, maintaining lower estimation errors across all settings, and often outperforming
other methods, especially in high SNR and large sample size scenarios.

Without imposing smoothness conditions on the distributed lag curves, EN and Ridge

generally exhibit the worst performance in most settings. The sparsity structure in Model
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B does not provide a notable advantage to EN, which explicitly explores the sparsity in the
coefficients. The performance gap indicates the importance of incorporating smoothness
constraints in modeling distributed lag effects. The performance of FPCA is not as good as
FPCA-R, suggesting that the ridge penalty is necessary for FPCA to achieve better performance.

In Figure 4, we illustrate the estimates of distributed lag curves for the first exposure in
Model A, under normal errors and varying Signal-to-Noise Ratios (SNRs), as produced by
Uni, Concave and FPCA-R. The results corresponding to Model B and Model C are provided
in the supplementary materials. Each parameter setup is represented through plots that
include both individual estimates from 50 replications and the corresponding average. While
FPCA-R yields smooth estimates, it often falls short in capturing the unimodal characteristic
inherent to the true distributed lag curves, with its average curve showing notable deviations
at the curve’s ends. In contrast, Uni and Concave reliably capture the unimodal shape of
the true distributed lag curves, with their average estimate more accurately reflecting the
actual curve.

7 Application to the Colorado birth cohort data

7.1 Data overview

Finally, we use our method to analyze the Colorado birth cohort data (Mork and Wilson,
2023). This dataset includes vital statistics records for births in Colorado, USA, with es-
timated conception dates between 2007 and 2015. The primary outcome of interest is the
birth weight for gestational age z-score (BWGAZ). The dataset focuses on exposures to a
mixture of environmental pollutants and temperature, which were measured at a high tem-
poral resolution throughout the gestational period. Specifically, the exposures of interest
include particulate matter smaller than 2.5 microns in diameter (PM2.5), nitrogen dioxide
(NO2), sulfur dioxide (SO2), carbon monoxide (CO), and temperature. These exposures
were averaged over each week of gestation based on the mother’s census tract of residence at
delivery. For our analysis, we restricted the data to singleton, full-term births (≥ 37 weeks)
in the Denver metropolitan area, where exposure data is more accurately estimated. The
final dataset consists of n = 195, 701 births with complete covariate and exposure informa-
tion. Covariates controlled for in the analysis include maternal age, weight, height, income,
education, marital status, prenatal care habits, smoking habits, and race/ethnicity. Addi-
tionally, categorical variables for the year and month of conception, census tract elevation,
and a county-specific intercept were included to adjust for potential confounders.

7.2 Estimates of distributed lag curves and critical windows

The estimates and corresponding pointwise 95% confidence intervals for the coefficient esti-
mates from the nearly unimodal estimator can be found in Figure 5. Results were similar
for the nearly concave estimator, and these have been relegated to the Appendix for brevity.
The critical windows identified for both the nearly unimodal and nearly concave estimator
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can similarly be found in Figure 6. A number of important findings about the adverse effects
of environmental pollutants on gestational birth weight are evident from the results. First,
there is a clear adverse effect of PM2.5 on gestational birth weight indicating that exposure
to increased levels of particular matter is associated with reductions in birth weight. Inter-
estingly, there is some variability across quantiles in the time periods identified as critical
windows for PM2.5. Exposures in the latest time periods are estimated to be the most im-
portant for the 5th quantile, while time periods in the center of the pregnancy are most
impactful on other quantiles, though there is some evidence that later time periods are most
impactful for the upper quantiles as well.
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Figure 5: Distributed lag functions (solid line) for each exposure (rows) at different quantiles
(columns) with 95% confidence intervals (gray area).
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Figure 6: Critical windows of different exposures identified by Uni and Concave across
different quantiles. Grey areas represent the 95% confidence intervals that include 0. Darker
colors represent confidence intervals farther from 0.

This ability to identify unique critical windows and effects for different quantiles highlights
the important gains in inference that can be obtained from our estimator. Birth weight is
an important predictor of many future health outcomes. However, effects on the extreme
quantiles, as we show here with the 5th quantile, are clinically more important than a small
shift in population mean.

In terms of the other exposures, only SO2 and temperature have clear effects on ges-
tational birth weight. The effect of SO2 is focused in the center of the gestational period,
while the effects of temperature are estimated to be most pronounced in the first and third
trimesters of the pregnancy. Another interesting finding is found in the estimates and critical
windows for carbon monoxide. Previous analyses of these data suggested a positive effect
of CO during one part of the gestation period, and a negative effect in a different time
period (Mork and Wilson, 2023; Antonelli et al., 2024). This is counter-intuitive because
(i) we don’t expect CO to be beneficial for children’s health, and (ii) it is unexpected for
the exposures to have one direction of association at one time period, and a different direc-
tion in another. Our nearly unimodal penalty precludes this from happening, showing the
benefits in interpretability and scientific plausibility of findings that can be obtained when
incorporating reasonable shape constraints into estimation.
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8 Discussion

In this paper we developed a novel penalized estimator for estimating quantile distributed
lag functions when exposures are measured repeatedly over time, which allows for the in-
corporation of smoothness and shape constraint penalties that can improve estimation. We
developed an efficient algorithm for computing the solution to the proposed nearly unimodal
or nearly concave penalized objective functions, and showed in simulations that it performs
well against feasible alternatives. Estimating distributed lag functions is a critically im-
portant problem in environmental health studies, particularly those involving maternal and
children’s health, and the ability to estimate conditional quantile distributed lags in a flexible
manner without strong parametric assumptions on the distributed lag functions helps expand
the set of questions that can be answered in such studies. We showed the benefits of the
proposed approach in a large-scale study of births in Colorado, where the proposed approach
identified critical windows of susceptibility for multiple exposures, while also providing more
interpretable and plausible results than prior research in this cohort.

There are a number of distinct directions that could add to the utility of the proposed
framework for estimating quantile distributed lag functions. While we have incorporated
smoothness and shape constraints through penalties on the estimated coefficients, we do
not currently enforce sparsity, which could be beneficial in high-dimensional settings or
when exposure selection is desired. While incorporating lasso or group lasso penalties could
potentially be a useful direction to pursue, this would come with computational challenges
from the introduction of additional tuning parameters. Another direction of relevance in
environmental epidemiology is to pursue bivariate distributed lag functions that allow for
interactions between two exposures at different time points (Chen et al., 2019). The extension
of smoothness penalties is relatively straightforward in this direction, but the incorporation
of shape constraints is not trivial, and could improve estimation by incorporating known
restrictions for two-dimensional distributed lag surfaces.
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