## Homework 9

STA4322/STA5328
Introduction to Statistics Theory
Spring 2020, MWF 3:00pm
Due date: Friday, April 17th, 2020 at 5:00pm
All work must be shown for complete credit. W.M.S. denotes the course textbook, Mathematical Statistics with Applications. Problem 3c is worth 1pt of extra credit.

1. Suppose that $Y_{1}, \ldots, Y_{n}$ denote a random sample from the probability density function given by

$$
f_{Y}(y \mid \theta, \lambda)=\left\{\begin{array}{cc}
\left(\frac{1}{\theta}\right) e^{-\frac{(y-\lambda)}{\theta}} & y>\lambda \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Find the likelihood ratio test statistic for testing $H_{0}: \theta=\theta_{0}$ versus $H_{A}: \theta>\theta_{0}$ with $\lambda$ unknown.
(b) Assuming $n$ is sufficiently large and the "regularity conditions" are satisfied, use Wilk's theorem to find the rejection region of an asymptotic level $\alpha$ test for the hypotheses in (a).
2. Suppose that $X_{1}, \ldots, X_{n}$ are independent and identically distributed exponential random variables with mean $\beta_{X}$ and $Y_{1}, \ldots, Y_{n}$ are independent and identically distributed exponential random variables with mean $\beta_{Y}$. Recall that this the density for an exponentially distributed random variable $U$ with mean $\beta$,

$$
f_{U}(u)=\frac{1}{\beta} e^{-\frac{u}{\beta}} \mathbf{1}(u>0) .
$$

We wish to test the hypotheses

$$
H_{0}: \beta_{X}=\beta_{Y}, \quad \text { vs } \quad H_{A}: \beta_{X} \neq \beta_{Y} .
$$

Let $\Theta=\left(\beta_{X}, \beta_{Y}\right)$. Let $L(x, y \mid \Theta)$ be the joint likelihood of $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ evaluated at $\Theta$.
(a) What is $\max _{\Theta \in \Omega_{0}} L(x, y \mid \Theta)$ ?
(b) What is $\max _{\Theta \in \Omega_{0} \cup \Omega_{A}} L(x, y \mid \Theta)$ ?
(c) Show that the likelihood ratio test rejects $H_{0}$ if

$$
\frac{\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)}{\left[\sum_{i=1}^{n}\left(X_{i}+Y_{i}\right)\right]^{2}}<k .
$$

No need to find $k$, you must only show that the rejection region has the form above.
3. A random sample $W_{1}, \ldots, W_{n}$ is drawn from a distribution with density

$$
f_{W}(w)=\frac{\theta \nu^{\theta}}{w^{\theta+1}} 1(w \geq \nu)
$$

where $\theta>0$ and $\nu>0$ are unknown parameters.
(a) Find the MLE of $\theta$ and $\nu$.
(b) Give the likelihood ratio test statistic $\lambda$ for the hypotheses

$$
H_{0}: \theta=1, \nu>0 \quad \text { vs } \quad H_{A}: \theta \neq 1, \nu>0 .
$$

(c) (Extra credit) Show that the LRT for

$$
H_{0}: \theta=1, \nu>0 \quad \text { vs } \quad H_{A}: \theta \neq 1, \nu>0
$$

has rejection region of the form

$$
\left\{W: T(W) \leq c_{1} \cup T(W) \geq c_{2}\right\}
$$

where $0<c_{1}<c_{2}$ are some constants (no need to find them) and

$$
T(W)=\log \left[\frac{\prod_{i=1}^{n} W_{i}}{\left(W_{(1)}\right)^{n}}\right],
$$

where $W_{(1)}=\min \left(W_{1}, \ldots, W_{n}\right)$.

