Homework 5 STA4322/STA5328 Introduction to Statistics Theory Spring 2020, MWF 3:00pm Due date: Monday, March 9th, 2020

All work must be shown for complete credit. W.M.S. denotes the course textbook, *Mathematical Statistics with Applications*.

- 1. Let U_1, \ldots, U_n be a random sample from the uniform distribution on $(0, 4\theta)$. Derive the method of moments estimator of θ .
- 2. Suppose that X_1, \ldots, X_n are independent and identically distributed random variables having a Poisson distribution with mean θ .
 - (a) Find the MLE for θ .
 - (b) Prove that $\hat{\theta}$, the MLE, is consistent for θ .
 - (c) What is the MLE for $P(X_i = 0) = e^{-\theta}$?
- 3. Let Y_1, \ldots, Y_n be a random sample from a distribution with density

$$f_Y(y \mid \theta) = \left\{ egin{array}{cc} heta y^{-2} & heta \leq y < \infty \ 0 & ext{otherwise} \end{array}
ight.,$$

where $\theta > 0$.

- (a) What is a sufficient statistic for θ ?
- (b) Find the MLE for θ .
- (c) Find the method of moments estimator of θ .
- 4. Let Y_1, \ldots, Y_n be a random sample from a distribution with density

$$f_Y(y) = \begin{cases} \left(\frac{2}{\theta^2}\right)(\theta - y) & 0 \le y \le \theta\\ 0 & \text{otherwise} \end{cases}$$

- (a) Use the method of moments to construct an estimator of θ .
- (b) Is this estimator a sufficient statistic for θ ?
- 5. Let W_1, \ldots, W_n be independent and identically distributed random variables having one of two densities. If $\theta = 0$, then

$$f_W(w \mid \theta) = \begin{cases} 1 & 0 < w < 1 \\ 0 & \text{otherwise} \end{cases}$$

and if $\theta = 1$, then

$$f_W(w \mid \theta) = \begin{cases} \frac{1}{2\sqrt{w}} & 0 < w < 1\\ 0 & \text{otherwise} \end{cases}$$

•

Compute the maximum likelihood estimator of θ .

6. Let x_1, \ldots, x_n be fixed, known constants and let β be a fixed, unknown constant. Let $\epsilon_1, \ldots, \epsilon_n$ be independent and identically distributed random variables where $\epsilon_i \sim N(0, \sigma^2)$, for $i = 1, \ldots, n$ with $\sigma^2 > 0$ unknown. Suppose we observe pairs $(y_1, x_1), \ldots, (y_n, x_n)$ where

$$y_i = \beta x_i + \epsilon_i, \quad (i = 1, \dots, n).$$

- (a) Find a two-dimensional sufficient statistic for (β, σ^2) .
- (b) Find the MLE for β , and verify that it is unbiased for β .
- (c) What is the distribution of the MLE for β ?