```
Homework 4
STA4322/STA5328
Introduction to Statistics Theory
Spring 2020, MWF 3:00pm
Due date: Friday, February 21st, }202
```

All work must be shown for complete credit. W.M.S. denotes the course textbook, Mathematical Statistics with Applications.

1. Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables, each with the density

$$
f_{X}(x \mid \alpha, \beta)= \begin{cases}\alpha \beta^{\alpha} x^{-(\alpha+1)} & : x \geq \beta \\ 0 & : \text { otherwise }\end{cases}
$$

Suppose β is known. Find a sufficient statistic for α.
2. Let U_{1}, \ldots, U_{n} be a random sample from the $\operatorname{Uniform}\left(\theta_{1}, \theta_{2}\right)$ distribution. Show that $U_{(n)}=$ $\max \left(U_{1}, \ldots, U_{n}\right)$ and $U_{(1)}=\min \left(U_{1}, \ldots, U_{n}\right)$ are jointly sufficient for θ_{1} and θ_{2}.
3. Let Y_{1}, \ldots, Y_{n} be independent and identically distributed random variables with density:

$$
f_{Y}(y \mid \theta)= \begin{cases}\left(\frac{2 y}{\theta}\right) e^{-y^{2} / \theta} & : y>0 \\ 0 & : \text { otherwise }\end{cases}
$$

(a) What is the likelihood $L\left(y_{1}, \ldots, y_{n} \mid \theta\right)$?
(b) Find a sufficient statistic for θ by factorizing the likelihood into the product of two functions: one depending only on the sufficient statistic and θ; the other depending only on the data.
(c) Assuming the sufficient statistic you have found is minimal, find a minimum variance unbiased estimator of θ.
4. Let W_{1}, \ldots, W_{n} be independent and identically distributed random variables $\operatorname{Binomial}(m, p)$ random variables.
(a) Find a sufficient statistic for p using the entire data (W_{1}, \ldots, W_{n}).
(b) Assuming your sufficient statistic is minimal, find the minimum variance unbiased estimator of $p(1-p)$.
5. Let Y_{1}, \ldots, Y_{n} be a random sample from a population with density

$$
f_{Y}(y \mid \theta)= \begin{cases}\frac{3 y^{2}}{\theta^{3}} & : 0<y<\theta \\ 0 & : \text { otherwise }\end{cases}
$$

(a) Show that $Y_{(n)}=\max \left(Y_{1}, \ldots, Y_{n}\right)$ is a sufficient statistic for θ.
(b) Given that $Y_{(n)}$ is a minimal sufficient statistic, find the MVUE of θ.
6. If X_{1}, \ldots, X_{n} be independent and identically distributed random variables following a Beta (α, β) distribution, i.e., the density of each X_{i} is

$$
f_{X}(x \mid \alpha, \beta)= \begin{cases}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} & : 0<x<1 \\ 0 & : \text { otherwise }\end{cases}
$$

(a) Suppose β is known. Find a sufficient statistic for α.
(b) Again supposing β is known, find the method of moments estimator of α.

