```
Homework 2
STA4322/STA5328
Introduction to Statistics Theory
Spring 2020, MWF 3:00pm
Due date: Friday, January 31st, 2020
```

All work must be shown for complete credit. W.M.S. denotes the course textbook, Mathematical Statistics with Applications. Problem 3 is worth 2 points of extra credit.

1. If $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent and identically distributed normal random variables with mean μ and variance σ^{2}, then $\bar{Y} \sim \mathrm{~N}\left(\mu, \sigma^{2} / n\right)$ where $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$. Prove this statement using moment generating functions.
2. Let X have probability density function

$$
f_{X}(x)=\left\{\begin{array}{ll}
\frac{2(\theta-x)}{\theta^{2}} & 0<x<\theta \\
0 & \text { otherwise }
\end{array} .\right.
$$

(a) Show that X has distribution function

$$
F_{X}(x)= \begin{cases}0 & x \leq 0 \\ \frac{2 x}{\theta}-\frac{x^{2}}{\theta^{2}} & 0<x<\theta \\ 1 & x \geq \theta\end{cases}
$$

(b) Show that X / θ is a pivotal quantity.
(c) Use the pivotal quantity from (b) to find a 90% lower confidence limit for θ.
3. (Extra credit) Suppose that $Y_{1}, Y_{2}, \ldots, Y_{n}$ form a random sample from the exponential distribution with unknown mean μ. Propose a confidence interval for μ with confidence level $\gamma(0 \leq \gamma \leq 1)$. Note that this should be an exact interval, i.e., does not use a CLT approximation.

Hint: Determine constants c_{1} and c_{2} such that $P\left(c_{1}<\frac{1}{\mu} \sum_{i=1}^{n} Y_{i}<c_{2}\right)=\gamma$. Note that the constants c_{1} and c_{2} can be left as quantiles of some particular distribution.
4. The downtime per day for a computing facility has mean 4 hours and standard deviation 0.8 hours.
(a) Suppose we want to compute probabilities about the average daily downtime for a period of 30 days.
i. What assumptions must be true to use the central limit theorem to obtain a valid approximation for probabilities about the average daily downtime?
ii. Under the assumptions you stated in the previous part, what is the approximate probability that the average daily downtime for a period of 30 days is between 1 and 5 hours? Your answer may be left in terms of Φ, the distribution function of a standard normal random variable.
(b) Under the assumptions you stated in the previous part, what is the approximate probability that the total downtime for a period of 30 days is less than 115 hours? Your answer may be left in terms of Φ, the distribution function of a standard normal random variable.
5. Let X_{1}, \ldots, X_{n} be a random sample from a normal distribution with mean zero and variance σ^{2}. Construct a 95% lower confidence limit for σ^{2}. Your anwser may be left in terms of quantiles of some particular distribution.
6. Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables. Let each X_{i} be uniformly distributed on the interval $(-1,1)$. Similarly, let Y_{1}, \ldots, Y_{n} be independent and identically distributed random variables also uniformly distributed on the interval $(-1,1)$. Assume all Y_{i} and X_{i} are independent. Let us then define a new variable Z_{i} : the variable $Z_{i}=1$ if $\left(X_{i}, Y_{i}\right)$ lies within the unit-disk (disk centered at 0 with radius 1); the variable $Z_{i}=0$ if (X_{i}, Y_{i}) lies outside the unit-disk.
(a) What is the distribution of Z_{i} ?
(b) Let $\bar{Z}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$. What is the mean and variance of \bar{Z} ?
(c) What is the approximate, large-sample distribution of $4 \bar{Z}$ (assuming n is very large)?
(d) Approximate $P(|4 \bar{Z}-\pi|<.01)$ using the central limit theorem.

