Homework 1 STA4322/STA5328 Introduction to Statistics Theory Spring 2020, MWF 3:00pm Due date: Wednesday, January 22nd, 2020

All work must be shown for complete credit. W.M.S. denotes the course textbook, *Mathematical Statistics with Applications*.

- 1. Let X_1, X_2, \ldots, X_n be independent random variables following the uniform distribution on the interval $[0, \theta]$ for some $\theta > 0$..
 - (a) Find the probability distribution function of $X_{(n)} = \max(X_1, X_2, \dots, X_n)$.
 - (b) Find the probability density function of $X_{(n)}$.
 - (c) Compute the mean and variance of $X_{(n)}$.
- 2. As in Problem 1, let X_1, X_2, \ldots, X_n be independent random variables following the uniform distribution on the interval [0, 1]. Find the density of $X_{(k)}$, the *k*th order statistic, where *k* is an integer between 1 and *n*.

Hint: You may use the fact that

$$\frac{d}{dp}\sum_{j=k}^{n} \binom{n}{j} p^{j} (1-p)^{n-j} = n \binom{n-1}{k-1} p^{k-1} (1-p)^{n-k}$$

without proof.

- 3. (WMS 8.12) Let Y_1, \ldots, Y_n be a random sample where for $i = 1, \ldots, n$, we know $Y_i \sim \text{Uniform}(\theta, \theta + 1)$ where $\theta > 0$ is an unknown parameter.
 - (a) Show that $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ is a *biased* estimator of θ .
 - (b) Propose an estimator of θ which is unbiased. Verify that this estimator is unbiased.
 - (c) Compute the MSE of \overline{Y} with respect to θ , i.e., compute $MSE_{\theta}(\overline{Y})$
- 4. Suppose that the random variables X_1 and X_2 are independent and that both have the normal distribution with mean μ and variance σ^2 . Prove that $\bar{X} = \frac{1}{2} \sum_{i=1}^{2} X_i$ and $s^2 = \frac{1}{2-1} \sum_{i=1}^{2} (X_i \bar{X})^2$ are independent.

Hint: Let $Y_1 = X_1 + X_2$ and $Y_2 = X_1 - X_2$. Show that \overline{X} and s^2 , respectively, can be written in terms of Y_1 and Y_2 alone. Then, verify that Y_1 and Y_2 are independent using that if two normally distributed random variables have zero covariance, they are independent.

5. Suppose that a random sample X_1, X_2, \ldots, X_n is to be taken from the uniform distribution on the interval $[0, \phi]$ with $\phi > 0$ unknown. What *n* is required so that

$$P(|\max(X_1, X_2, \dots, X_n) - \phi| < 0.1\phi) \ge 0.95$$

for all possible ϕ ?