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Transcriptome-wide association studies based on genetically pre-
dicted gene expression have the potential to identify novel regions
associated with various complex traits. It has been shown that incor-
porating expression quantitative trait loci (eQTLs) corresponding to
multiple tissue types can improve power for association studies in-
volving complex etiology. In this article, we propose a new multivari-
ate response linear regression model and method for predicting gene
expression in multiple tissues simultaneously. Unlike existing meth-
ods for multi-tissue joint eQTL mapping, our approach incorporates
tissue-tissue expression correlation, which allows us to more efficiently
handle missing expression measurements and more accurately predict
gene expression using a weighted summation of eQTL genotypes. We
show through simulation studies that our approach performs better
than the existing methods in many scenarios. We use our method to
estimate eQTL weights for 29 tissues collected by GTEx, and show
that our approach significantly improves expression prediction accu-
racy compared to competitors. Using our eQTL weights, we perform
a multi-tissue-based S-MultiXcan [2] transcriptome-wide association
study and show that our method leads to more discoveries in novel
regions and more discoveries overall than the existing methods. Esti-
mated eQTL weights and code for implementing the method are avail-
able for download online at github.com/ajmolstad/MTeQTLResults

1. Introduction. Genome-wide association studies (GWAS) have identified tens of
thousands of reproducible trait associated single-nucleotide polymorphisms (SNPs) through
agnostic SNP-by-SNP association analysis (see https://ebi.ac.uk/gwas/) [4]. Though most
of these associated SNPs lie outside of any gene, they are enriched for expression quantitative
trait loci (eQTL)[12, 22, 30], which are genetic loci that affect the expression of one or more
genes [6, 27, 34, 39, 42]. Machine learning methods have been used to infer eQTL regulation
of a gene using all nearby genetic variants [8, 21, 51]. Using genetically predicted gene
expression from these models, researchers have performed transcriptome-wide association
studies (TWAS) and reported many novel regions associated with various complex traits
[11, 32, 20, 1], many of which have no GWAS association within 1Mb. There are several
advantages to such analyses: leveraging gene expression enriches potential trait associated
SNPs, aggregating signals through joint eQTL modeling enhances the overall association
strength, and the number of tests is substantially reduced from testing millions of SNPs
to about 20,000 genes. Because of the tissue-dependent nature of gene expression, these
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Fig 1. A heatmap of missingness in GTEx gene expression data for the 29 tissues we analyzed. Rows
correspond to the 29 tissues and columns correspond to the 613 subjects with expression measured in at least
one of the corresponding tissues. White spaces denote missing measured expression, whereas black denote
observed measured expression.

analyses typically use gene expression from a single trait-relevant tissue. However, recent
works have shown that eQTLs are often shared across multiple tissues and assessing the
association of genetically predicted gene expression using multiple tissues improves power
for genetic association with complex traits [1, 2].

Leveraging shared eQTLs across tissues improves power for eQTL discoveries and gene ex-
pression imputation accuracy, which can, in turn, further improve power for transcriptome-
wide association analysis. Flutre et al. [7] and Li et al. [19] proposed multi-tissue eQTL
mapping approaches that identified more eQTLs than tissue-by-tissue approaches. More re-
cently, Hu et al. [14] proposed a penalized regression approach for joint modeling of eQTLs
using a penalty which encourages shared eQTLs across tissues. Using the genotype and
expression data for various tissues from the Genotype-Tissue Expression (GTEx) project
[9, 10], they showed multi-tissue eQTL models improve imputation accuracy and gene as-
sociation detection substantially compared to single-tissue approaches.

However, the method of Hu et al. [14] does not take into account tissue-tissue correlation
of gene expression in joint eQTL modeling. In the recent statistical literature, it has been
shown that in high-dimensional penalized multivariate response linear regression, account-
ing for error correlation (here, tissue-tissue correlation) often leads to improved variable
selection and prediction accuracy [38, 48, 45, 18]. This phenomenon can be partly explained
by a seemingly unrelated regression interpretation of high-dimensional sparse multivariate
response linear regression [50, 41]. Further, owing to biological and cost constraints, some
tissue types are harder to obtain than others. For example, of the 29 GTEx tissues we focus
on in our analysis, there were 613 individuals with expression measured in at least one tissue
of interest. Some individuals have as few as one tissue with measured expression, whereas
others have expression measured in as many as 28 tissues. No individual has expression
measured in all 29 tissues. The sample size per tissue varies from 85 (Minor Salivary Gland)
to 491 (Muscle - Skeletal) (Figure 1). We show that leveraging tissue-tissue correlation can
substantially improve gene expression prediction accuracy, especially for tissues with small
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sample sizes. We do so by imputing the missing gene expression in a way which simultane-
ously estimates tissue-tissue correlation and joint eQTL weights. The mechanism through
which this operates is straightforward. For example, if two tissues’ expression is highly cor-
related, measuring expression in only one of these tissues allows one to reasonably estimate
expression in the unmeasured tissue. If tissue-tissue correlation is ignored, substantial gains
in gene expression prediction accuracy may be lost.

In this article, we propose a new method for multi-tissue joint eQTL mapping which
can be used when individuals have missing gene expression measurements in many tissues.
We develop an efficient penalized expectation conditional maximization (ECM) algorithm
to solve the optimization problem. Our penalties allow us to identify both tissue specific
and shared eQTLs while simultaneously modeling cross-tissue expression covariance. Com-
pared to existing methods for multi-tissue joint eQTL mapping, our approach has several
advantages:

1. our method explicitly models tissue-tissue correlation, providing new insights about
cross-tissue expression dependence which cannot be explained by eQTLs;

2. by modeling cross-tissue correlation, our method more efficiently makes use of the
available expression measurements for eQTL weight estimation;

3. in both simulations and our analysis of the GTEx data, our approach leads to improved
gene expression prediction accuracy compared to (a) tissue-by-tissue approaches which
estimate eQTL weights separately; (b) two-step approaches where imputation and
prediction are performed in sequential steps; and (c) approaches which ignore cross-
tissue correlation;

4. our computational approach can be used to more efficiently compute special cases of
our method, e.g., the method of Hu et al. [14].

The implication of 3) on association analyses of genetically predicted gene expression is
clear: with more accurate expression prediction models, one can perform more reliable tests,
and thus, can expect more novel regions to be discovered. In particular, with the weights
estimated from the GTEx data using our method, we performed a multi-tissue-based S-
MultiXcan[2] TWAS analysis of four complex traits. We found that our weights led to more
total discoveries and more novel discoveries beyond single variant analyses than existing
methods in four traits we studied. Focusing on genes associated with the occurrence of a
heart attack, we identified multiple regions which were not attributable to any GWAS associ-
ated SNP, but have been associated with traits related to heart function, e.g., coronary heart
disease, triglyceride levels, and LDL cholesterol. These findings demonstrate the potential
power gain using an integrative analysis with multiple tissues and also offer insight into po-
tential factors associated with the occurrence of a heart attack. Discovered genes from our
S-MultiXcan analysis, our estimated eQTL weights, and R code to reproduce the simulation
study results are available for download at github.com/ajmolstad/MTeQTLResults.

2. Method.

2.1. Penalized maximum likelihood estimator. Throughout, we will assume a general
model for cross-tissue expression given SNP genotypes. For a particular gene, let yi ∈ Rq
denote the vector of centered and normalized measured expression in q tissues for the ith
subject and let xi ∈ Rp denote the genotypes of p SNPs (also centered and normalized)
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within a certain distance (e.g., 500kb) of the gene of interest. We assume that for the ith
subject, log-transformed expression (e.g., see Section 2 of the Supplementary Material [26])
is a realization of the random vector

(2.1) Y i = β′∗xi + εi, εi ∼ Nq

(
0,Ω−1

∗
)
, (i = 1, . . . , n)

where Nq denotes the q-dimensional multivariate normal distribution, β∗ ∈ Rp×q is the
unknown regression coefficient matrix (i.e., eQTL weights), and Ω∗ ∈ Sq+ is the cross-tissue
error precision (inverse covariance) matrix. We further assume that εi is independent of εj
for all i 6= j. Throughout, we let Sq+ denote the set of q× q symmetric and positive definite
matrices. To simplify notation, we let [n] ≡ {1, 2, . . . , n} throughout for all n ∈ N.

We estimate β∗ and Ω∗ jointly by maximizing the observed-data penalized log-likelihood
with respect to β and Ω, the optimization variables corresponding to β∗ and Ω∗, respec-
tively. Let oi and mi be sets of indices corresponding the components of yi (tissues) which
are observed and missing, respectively for i = [n]. Without loss of generality, we can then
write yi = (y′i,oi ,y

′
i,mi

)′ ∈ Rq where A′ denotes the transpose of matrix or vector A, and
yi,oi denotes the subvector of yi consisting of elements indexed by oi. Let YO denote the
collection of the yi,oi ’s for i = [n], i.e., YO is the collection of all observed gene expres-
sion for the n subjects. Thus, the observed-data log-likelihood, logL(β,Ω | YO), (ignoring
constants) for the n subjects is proportional to

(2.2) logL(β,Ω | YO) = − 1

n

n∑
i=1

{
(y′i,oi − x

′
iβ·,oi)Σ

−1
oi (y′i,oi − x

′
iβ·,oi)

′ + log det (Σoi)
}
,

where Σoi ∈ S|oi|+ is the submatrix of Σ ≡ Ω−1 consisting of rows and columns indexed by

oi, β·,oi ∈ Rp×|oi| is the submatrix of β containing columns indexed by oi, and |oi| denotes
the cardinality of oi. Throughout, tr and det denote the trace and determinant operators,
respectively. Note that we have assumed yi and xi have columnwise average zero so that
we can write (2.1) without an intercept for ease of display.

Unfortunately, maximizing (2.2) directly is computationally difficult since missingness
patterns differ across subjects. Instead, we use a variation of the expectation-maximization
(EM) algorithm, which allows us to operate on a function of the complete-data log-likelihood.
Analogously to YO, let YM denote the collection of all unmeasured (missing) gene expres-
sion for the n subjects. If we observed YM , the complete data log-likelihood would be∑n

i=1 log fi(yi,oi ,yi,mi | β,Ω) where fi is the density corresponding to (2.1) for the ith
subject.

To estimate β∗ and Ω∗ while accounting for missingness, we propose to maximize a
penalized version of logL(β,Ω | YO) with respect to β and Ω jointly. Specifically, we
propose to estimate (β∗,Ω∗) with

(2.3) arg max
β∈Rp×q ,Ω∈Sq+

{
logL(β,Ω | YO)− gλβ ,α(β)− hλΩ

(Ω)
}
,

where λβ > 0, λΩ > 0, and α ∈ [0, 1] are tuning parameters; and gλβ ,α : Rp×q → R and
hλΩ

: Sq+ → R are convex penalty functions applied to β and Ω, respectively. These penalties
are chosen based on the biology underlying multi-tissue joint eQTL mapping. In particular,
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it is believed that large proportion of eQTLs are shared across multiple tissues in most genes
[7, 19, 14], which would imply that nonzero entries of β∗ are likely to occur in a subset of
rows since each row of β∗ corresponds to a particular SNP’s regression coefficients (eQTL
weights) for the q tissues. To exploit this assumption, we use a penalty which balances
row-wise sparsity with element-wise sparsity:

(2.4) gλβ ,α(β) = λβ

p∑
j=1

{
α

(
q∑

k=1

√
nmax

nk
|βj,k|

)
+ (1− α)‖βj,·‖2

}
,

where ‖ · ‖2 denotes the Euclidean norm of a vector, βj,· ∈ Rq is the jth row of β for j ∈ [p],
nk = | {j : j ∈ ok} | for each k ∈ [q], and nmax = maxl∈[q] nl. If α = 0, estimates of β∗ would
only have rows which are entirely zero or nonzero. Conversely, when α = 1, this penalty
does not encourage eQTL sharing explicitly. A variation of the penalty in (2.4) was also
used by Peng et al. [33] in the context of the multivariate response linear regression model
of gene expression on copy number alterations.

To estimate the cross-tissue error precision matrix Ω∗, we use an L1-norm penalty on the
entries of the corresponding optimization variable

hλΩ
(Ω) = λΩ

q∑
j=1

q∑
k=1

|Ωj,k|.

For sufficiently large values of the tuning parameter λΩ, this penalty leads to estimates of
the precision matrix which will have all off-diagonal entries equal to zero [49, 37]. Hence,
this penalty implicitly assumes that some entries of Ω∗ equal zero. This assumption is also
biologically reasonable in the context of multi-tissue joint eQTL mapping: it is well known
that under (2.1), a zero in the (j, k)th entry of Ω∗ implies that expression in the jth and kth
tissues are independent given expression in all other tissues and all p SNP genotypes. Note
that we penalize the diagonals of Ω. We do so for two reasons: first, when p > n (which
is the case for nearly every gene we fit the model to), without penalizing the diagonals, a
perfect fit can occur in the M-step. This point was mentioned, for example, in the R package
documentation for MRCE, which implements the method described in Rothman et al. [37].
Second, when fitting predictive models, additional shrinkage imposed on the diagonals can
lead to improved prediction accuracy. This was observed in the recent literature on precision
matrix estimators used in predictive models, e.g., Molstad and Rothman [24].

2.2. Penalized expectation conditional maximization algorithm. To obtain the penalized
maximum likelihood estimator, i.e., to solve (2.3) with the penalties g and h, we propose a
penalized expectation conditional maximization (ECM) algorithm [23]. The (k)th iterate of
the standard EM algorithm is computed in two steps: the E-step and the M-step. The E-step
requires computing the expectation of complete data negative log-likelihood conditional on
YO and the previous iterates β(k−1) and Ω(k−1)

Q(β,Ω | β(k−1),Ω(k−1)) = −E

[
1

n

n∑
i=1

log fi(yi,oi ,yi,mi | β,Ω) | YO,β
(k−1),Ω(k−1)

]
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and the subsequent M-step updates

(2.5) (β(k),Ω(k)) ∈ arg min
β∈Rp×q ,Ω∈Sq+

{
Q(β,Ω | β(k−1),Ω(k−1)) + gλβ ,α(β) + hλΩ

(Ω)
}
.

However, existing methods for solving (2.5) use a blockwise coordinate descent algorithm
iterating between updating Ω and β. Instead, we propose to update each variable once (with
the other held fixed) and then return to the E-step. Hence, our algorithm is a generalized
expectation conditional maximization algorithm in the sense that we do not solve the M-step
exactly at each iteration, but are guaranteed that the objective function is non-increasing.
An outline of the complete algorithm is given in Algorithm 1.

Algorithm 1. Penalized ECM algorithm for computing (2.3)

1. Initialize β(1) ∈ Rp×q and Ω(1) ∈ Sq+. Set k = 1.

2. Compute Q(β,Ω | β(k),Ω(k))

3. Update Ω(k+1) ← arg minΩ∈Sq+{Q(β(k),Ω | β(k),Ω(k)) + hλΩ
(Ω)}.

4. Update β(k+1) ← arg minβ∈Rp×q{Q(β,Ω(k+1) | β(k),Ω(k)) + gλβ ,α(β)}.
5. If the objective value from (2.3) has not converged, update k ← k + 1 and return to

Step 2.

Because the updates for Ω and β (with the other held fixed) are both convex optimization
problems, the M-step is an instance of a biconvex optimization problem. In the following
subsection, we describe how to solve Steps 2-4 of Algorithm 1.

2.3. Algorithm details. To compute the Q function in Step 2 (E-Step) of the penalized
ECM algorithm, we use the conditional multivariate normal distribution for Y i,mi given
yi,oi and the current iterates of β and Ω. Specifically,

(2.6) Y i,mi | yi,oi ,β
(k),Ω(k) ∼ N|mi|

(
µ

(k)
i ,V

(k)
i

)
, (i = 1, . . . , n),

where the mean and variance from (2.6) are

µ
(k)
i = β

(k)
·,mi
′
xi + Σ(k)

mi,oi [Σ
(k)
oi ]−1(yi,oi − β

(k)
·,oi
′
xi);

V
(k)
i = Σ(k)

mi −Σ(k)
mi,oi [Σ

(k)
oi ]−1Σ(k)

oi,mi

with Σ
(k)
mi,oi denoting the submatrix of Σ(k) whose rows correspond to the index set mi and

whose columns correspond to index set oi, i.e., Σ
(k)
oi ≡ Σ

(k)
oi,oi and Σ

(k)
mi ≡ Σ

(k)
mi,mi . With µ

(k)
i

and V
(k)
i computed and stored for each i ∈ [n], we can then express Step 3 of the penalized

ECM algorithm as a familiar convex optimization problem.

Remark 1. Step 3 of Algorithm 1 can be expressed

(2.7) Ω(k+1) = arg min
Ω∈Sq+

tr
{

S(β(k),Σ(k))Ω
}
− log det(Ω) + λΩ

q∑
j=1

q∑
k=1

|Ωj,k|
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where S(β(k),Σ(k)) = n−1
∑n

i=1 Γ
(k)
i with submatrices of Γ

(k)
i for each i ∈ [n] equal to

[Γ
(k)
i ]oi = (y′i,oi − x

′
iβ

(k)
·,oi)
′(y′i,oi − x

′
iβ

(k)
·,oi),

[Γ
(k)
i ]mi = (µ

(k)′

i − x′iβ
(k)
·,mi)

′(µ
(k)′

i − x′iβ
(k)
·,mi) + V

(k)
i ,

[Γ
(k)
i ]oi,mi = (y′i,oi − x

′
iβ

(k)
·,oi)
′(µ

(k)′

i − x′iβ
(k)
·,mi).

Conveniently, (2.7) is exactly the optimization problem for computing the L1-penalized
normal log-likelihood precision matrix estimator with input sample covariance matrix S(β(k),Σ(k)).
Many efficient algorithms and software packages exist for computing (2.7). In our imple-
mentation, we used the software QUIC to solve (2.7) [13].

Step 4 of Algorithm 1, the update for β with Ω(k+1) fixed, can be expressed as a minimizer
of a penalized weighted residual sum of squares criterion.

Remark 2. Step 4 of Algorithm 1 can be expressed

(2.8) β(k+1) = arg min
β∈Rp×q

{
1

n

n∑
i=1

(ỹ
(k)
i − β

′xi)
′Ω(k+1)(ỹ

(k)
i − β

′xi) + gλβ ,α(β)

}

where ỹ
(k)
i ∈ Rq with ỹ

(k)
i,oi

= yi,oi and ỹ
(k)
i,mi

= µ
(k)
i for i = [n].

To solve (2.8), we use an accelerated proximal gradient descent algorithm [31]. We
briefly motivate this iterative procedure from a majorize-minimize perspective [17]. Let
`λβ : Rp×q → R denote the objective function from (2.8) (ignoring dependence on α for
ease of display) so that `0 denotes the unpenalized weighted residual sum of squares (i.e.,
the objective from (2.8) with λβ = 0). Let ‖A‖2F = tr(A′A) denote the squared Frobenius

norm of a matrix A. Let β(r) be the rth iterate of β for the sub-algorithm to solve Step 4.
Given β(r), because `0 is convex and has Lipschitz continuous gradient,

`0(β) ≤ `0(β(r)) + tr{∇`0(β(r))′(β − β(r))}+
1

2γ
‖β − β(r)‖2F

for all β with step size γ > 0 sufficiently small. It follows that

`λβ (β) ≤ `0(β(r)) + tr{∇`0(β(r))′(β − β(r))}+
1

2γ
‖β − β(r)‖2F + gλβ ,α(β)(2.9)

for all β with equality when β = β(r). Thus, if we minimize the right hand side of (2.9)
with respect to β, we are guaranteed that `λβ (β(r+1)) ≤ `λβ (β(r)). This suggests an iterative
procedure to solve (2.8): in the first step, we construct the majorizing function [17] from
the right hand side of (2.9) at the current iterate; in the second step, we minimize this
majorizing function to obtain our new iterate; and then we repeat these two steps until the
objective function from (2.8) converges.

This approach is computationally efficient because (2.10) can be solved in (essentially)
closed form by computing the so-called proximal operator of g [36]. After some algebra, we
see to minimize the right hand side of (2.9), we solve

(2.10) β(r+1) = arg min
β∈Rp×q

{
1

2
‖β − β(r) + γ∇`0(β(r))‖2F + γgλβ ,α(β)

}
,
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which is, by definition, the proximal operator of γg evaluated at β(r) − γ∇`0(β(r)). Define
soft(x, τ) = max(|x| − τ, 0)sign(x) elementwise. Then, β(r+1) can be obtained using the
updating equations

1. ∆← β(r) − γ∇`0(β(r)),

2. ∆̄j,k ← soft
(
∆j,k, γλβα

√
nmax
nk

)
for all (j, k) ∈ [p]× [q],

3. β
(r+1)
j,· ←

{
max

(
1− γλβ(1−α)

‖∆̄j,·‖2
, 0
)

∆̄j,· : ∆̄j,· 6= 0

0 : ∆̄j,· = 0
for all j ∈ [p].

For a derivation, see Simon et al. [40]. For the complete algorithm to solve (2.8), steps 1–3
above are repeated until the objective function converges.

In Section 4 of the Supplementary Material [26], we detail exactly the steps of an accel-
erated version this algorithm which we use in our implementation, and discuss selecting the
step size γ. In Section 1 of the Supplementary Material, we provide additional details about
our implementation of the penalized ECM algorithm. To summarize, we use warm-starts
and employ a simple heuristic to determine where to stop computing (2.3) along its solu-
tion path. In this same section, we propose a procedure for constructing sets of reasonable
candidate tuning parameters based on the Karush-Kuhn-Tucker (KKT) conditions for (2.7)
and (2.8). Computing time statistics and a discussion of approaches for parallelization can
also be found in the Supplementary Material.

2.4. Related methods. A special case of our method was proposed by Hu et al. [14].
In particular, the objective function they propose to minimize to estimate eQTL weights
is equivalent to (2.3) with the constraint that Ω = Iq in the case that nj = nk for all
j 6= k (although they use scaling factor nmax/n in their g). That is, their method implic-
itly assume that gene expression is uncorrelated with equal variance after conditioning on
SNP genotypes. However, Hu et al. [14] do not solve the optimization problem they posed
directly. Instead, they devised an efficient coordinate descent scheme which approximated
their estimator. While their approximation performed well in terms of predicting expression,
comparing our method to theirs directly is difficult: it is not clear when to terminate their
iterative procedure because their algorithm does not minimize an objective function whose
value can be computed. Hence, we compare our approach, which assumes only Ω ∈ Sq+, to
what we refer to as the exact version of the Hu et al. [14] (i.e., (2.3) with the constraint
Ω = Iq) in our simulation studies, the GTEx data analysis, and the S-MultiXcan TWAS.
To compute the estimator of Hu et al. [14], we use a proximal gradient descent algorithm
similar to that used for the optimization problem in (2.8). Additional details about this
algorithm are also provided in the Supplementary Material.

3. Simulation studies.

3.1. Data generating models and competing methods. We performed extensive numerical
experiments to study how the number of shared eQTLs, the population R2 (equivalently,
narrow-sense heritability, [44]), and tissue-tissue correlation structure affect the performance
of various methods for estimating multi-tissue eQTL weights.

To closely mimic the settings of the joint eQTL mapping in the GTEx data, we ob-
tained whole genome sequencing SNP genotype data for all SNPs within 500kb of the
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gene SPATC1L [28] for 620 subjects from the GTEx dataset. After pruning highly corre-
lated SNPs (see Data Preparation section), we are left with p = 1178 SNP genotypes. For
each replication, we then generated n = 620 subjects’ expression in q = 29 tissues: letting
xi ∈ Rp be the SNP genotypes for the ith subject, we generated yi ∈ Rq, as a realization
of the random vector β′∗xi + εi for i = [n], where β∗ ∈ Rp×q are the eQTL weights and
εi ∼ Nq(0,Ω

−1
∗ ) are independent and identically distributed errors. For five hundred inde-

pendent replications in each setting, we randomly split the n = 620 subjects into a training
set of size ntrain = 400, a validation set of size 110, and a testing set of size 110.

Independently in each replication, we generated β∗ as follows: first, we generated B ∈
Rp×q to have entries which were independent N(0, 1). Then, we generated S ∈ Rp×q to be a
matrix whose rows are either all zero or all one: we randomly select s rows to be nonzero,
where s ∈ [20]. Given S, we then generated U ∈ Rp×q so that each of the q columns has 20-s
randomly selected entries equal to one only from entries which are zero in S and all others
equal to zero. With these, we set β∗ = B◦S+B◦U where ◦ denotes the elementwise product.
By constructing β∗ in this way, each tissue has twenty total eQTLs, s of which are shared
across all tissue types. We consider s = {5, 10, 15, 18, 20} in the simulations we present
in this section. Note that since many SNPs are highly correlated (linkage disequilibrium),
marginally, there are far more SNPs associated with gene expression.

We construct Ω−1
∗ to have a block-diagonal structure and to control the R2. Specifically,

we set Ω−1
∗ = DΣ̃D where D ∈ Rq×q is a diagonal matrix with positive entries and Σ̃ ∈ Sq+

is a correlation matrix. In our analysis of the GTEx data, we found that on average, the
estimated correlation matrix had an approximately 20 × 20 correlated block, of which a
10× 10 sub-block was more highly correlated. Thus, we set

Σ̃j,k =


ρ (j, k) ∈ [20]× [20]; (j, k) 6∈ [10]× [10]; j 6= k
ρ+ 0.2 (j, k) ∈ [10]× [10]; j 6= k
1 j = k
0 otherwise

In the results presented here, we considered ρ ∈ {0, 0.1, 0.3, 0.5, 0.7}. Given Σ̃ and β∗,
we then generated entries of D to determine the R2 for all q = 29 tissues: we considered
R2 ∈ {.01, .05, .10, .20, .40}.

Finally, we also randomly assigned missingness to both the training set and validation
set responses with missing probability equal to 0.55, i.e., the missing rate in the GTEx
gene expression data we analyzed. For each method, we fit the model to the training data,
selected tuning parameters using the validation data, and measured the prediction and
variable selection accuracy on the testing data.

We considered three different methods: two of which can be considered “complete-case”
estimators. We define the missingness matrix M ∈ Rntrain×q

Mi,k =

{
n
−1/2
k : yi,k was observed

0 : yi,k was missing
(i, k) ∈ [ntrain]× [q],

where nk is the number of subjects with expression observed for the kth tissue in the training
data. Similarly, let Y ∈ Rntrain×q be the fully-observed gene expression training data matrix,
and X ∈ Rntrain×p the SNP genotypes for the training data. We consider three alternative
methods.
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– EN. The tissue-by-tissue elastic net defined as

arg min
β∈Rp×q

1

2
‖(Y −Xβ) ◦M‖2F +

q∑
k=1

λk

αk p∑
j=1

|βj,k|+
(1− αk)

2

p∑
j=1

β2
j,k

 ,

where for each k ∈ [q], (λk, αk) ∈ R+× [0, 1] is chosen to maximize the validation set R2 for
the kth tissue. This is the default method for estimating eQTL weights in Gamazon et al.
[8].

– MT. The exact version of the estimator proposed by Hu et al. [14]

(3.1) arg min
β∈Rp×q

{
1

2
‖(Y −Xβ) ◦M‖2F + gλβ ,α(β)

}
,

where λβ > 0 and α ∈ [0, 1] are chosen to maximize validation set R2 averaged over all 29
tissues.

– Cov-MT. The model-based approach we proposed in (2.3) with tuning parameters λβ >
0, λΩ > 0, and α ∈ [0, 1] chosen to maximize the validation set R2 averaged over all 29
tissues.

We also obtained oracle estimators Or-EN and Or-MT. These are equivalent to EN and
MT without any missingness. Here Or stands for “Oracle”, i.e., an estimator which has
information not available in practice. These estimators replace M with an Rntrain×q matrix

with each entry equal to n
−1/2
train . These estimators are meant to compare to the idealized

setting where there is no missingness in the response to distinguish between the effects of
missingness and the effects of ignoring tissue-tissue correlation.

Finally, we also considered KNN(20)-MT, which first imputes the missing responses using
a weighted mean based on the 20-nearest neighbors (subjects) and then used the same
criterion as Or-MT to estimate β∗. We also tried imputation via k-nearest neighbors with k ∈
{2, 5, 10, 50}, but results did not differ substantially across these choices of k, so additional
results are omitted.

We measured performance using three metrics. The metric we used to measure prediction
accuracy was test-set R2 averaged over the q responses.

Note that testing set R2 can be less than zero, which would occur when the training
sample mean predicts the testing data better than the estimate of β∗. We also measured
the linkage disequilibrium (LD)-adjusted true positive rate∑q

k=1

{∑p
j=1 1

(
β∗j,k 6= 0 ∩ β̂l,k 6= 0 for any l ∈ {l : |ΣX

l,j | > 0.60}
)}

∑q
k=1

∑p
j=1 1(β∗j,k 6= 0)

where ΣX
l,j denotes the correlation between the lth and jth SNPs in the complete dataset.

The LD-adjustment accounts for the fact that SNP genotypes are often highly correlated.
Under our data generating model, we consider an eQTL discovery “true” if the selected SNP
genotype is moderately correlated with a true eQTL (i.e., predictor whose corresponding
regression coefficient is nonzero).
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In addition to true positive rate, we also measured model size, i.e., the proportion of
nonzero entries of the estimated regression coefficient matrix. Note that under our data
generating models, the true model size is approximately .017, i.e., (20/p), but because
SNPs are so highly correlated, much larger estimated models could be expected.

3.2. Simulation study results. We present complete simulation study results in Figure 2.
In the top row, (a), we present results with tissue-tissue correlation ρ ∈ {0.0, 0.1, 0.3, 0.5, 0.7}
varying, the population R2 fixed at 0.10, and the proportion of shared eQTLs fixed at 0.75
(i.e., s = 15). In this setting, we observe that our method, Cov-MT performs better than
all realistic competitors: only Or-MT, the version of MT which does not have any responses
missing, outperforms our method when ρ is less than 0.5. As one would expect, when
expression is nearly uncorrelated (ρ = 0), our method Cov-MT performs similarly to the
exact version of the method of Hu et al. [14], which implicitly assumes no tissue-tissue
correlation. Remarkably, when ρ is greater than or equal to 0.50, Cov-MT outperforms even
the “Oracle” methods which have no missingness. In fact, the prediction accuracy of Cov-MT
increases as ρ increases, whereas all other methods, which do not explicitly model tissue-
tissue correlation, have prediction accuracy remaining constant or slightly decreasing as ρ
increases. This demonstrates the benefit of accounting for tissue-tissue correlation in multi-
tissue joint eQTL mapping when expression across tissue types can be reasonably assumed
to be conditionally dependent. It is also notable that EN performs very poorly: this is partly
attributable to the fact that this approach does not leverage potential eQTLs shared across
tissues, and thus, has relatively poor variable selection of eQTLs, which is apparent from
the results displayed in the middle figure of row (a).

As ρ increases, the LD-adjusted true positive rate (TPR) of our method tends towards
one, whereas for many of the competitors, the true positive rate decreases as ρ increases.
This may partly be due to the fact that these methods tend to estimate fewer eQTLs as ρ
increases, which is demonstrated in the rightmost figure of row (a). Notably, all methods
tend to yield much larger models than the true model. Finally, we also observe that our
method significantly outperforms the 20-nearest neighbor two-step imputation approach
(KNN(20)-MT), which first imputes missing values via k-nearest neighbor and then fits the
Or-MT model to the imputed dataset. This demonstrates the importance of jointly estimating
the model parameters and performing expression imputation.

In the middle row, (b), of Figure 2, we present results with R2 ∈ {0.01, 0.05, 0.1, 0.2, 0.4},
the proportion of shared eQTLs fixed at 0.75, and ρ = 0.50 fixed. We observe that our
method performs as well or better than competitors across all settings in terms of average
test set R2, except for when R2 = 0.40, in which case Or-MT performs best. Interestingly, our
method also performs best in terms of LD-adjusted TPR for small R2, but as R2 approaches
0.40, many methods tend to perform similarly, though KNN(20)-MT nearly doubled the model
size relative to other methods. It is also notable that even EN, which performed very poorly
in the settings displayed in row (a), actually performs better than KNN(20)-MT in terms of
prediction accuracy when the population R2 = 0.40.

Finally, in the bottom row, (c), of Figure 2, results are displayed letting the proportion
of shared eQTLs vary with R2 = 0.10 fixed and ρ = 0.50 fixed. All methods which can
exploit shared eQTLs (i.e., all methods other than EN, tissue-by-tissue elastic net) improve
in prediction accuracy and LD-adjusted TPR as the proportion of shared eQTLs approaches
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Fig 2. Average test set R2, average LD-adjusted true positive rate, and average model size (proportion) for
six competing methods where: (a) ρ, the correlation of the errors varies; (b) the population R2 varies; and
(c) the proportion of the twenty eQTLs which are shared across all 29 tissues varies. Error bars denote two
times the standard error for each method. Note that the spacing on the horizontal axes is not proportional
to the difference in values represented on the horizontal axes. In the leftmost plot of the (b), error bars are
not visible due to the range of the vertical axis. Note that throughout, the default settings were R2 = 0.1, the
proportional of shared eQTLs was equal to 0.75, and ρ = 0.50.
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Fig 3. Five-fold cross-validation prediction accuracy results from 29 tissues collected by GTEx.
(a, b): Left-out fold R2 averaged across five folds and all genes. In (a), dots correspond to the average R2

for one tissue estimated by EN. In (b), dots correspond to the average R2 for one tissue estimated using MT.
In both, arrow heads point to the average R2 of the same tissue using Cov-MT, and colors correspond to the
sample sizes partitioned into intervals of size 100. In (a), the vertical line denotes where the horizontal axis
begins in the (b). The points with no visible arrow in (b) had differences less than 3 × 10−4 in magnitude.

one. Notably, our method performs similarly in terms of prediction accuracy to Or-MT, which
is not applicable in practice. In addition, our method, Cov-MT, has higher LD-adjusted TPR
than all other methods across all proportions of shared eQTLs. This suggests that accounting
for cross-tissue dependence may also improve variable selection accuracy.

In Tables 1–3 of the Supplementary Material [26], we display summary statistics of the
computing times for each setting considered in our simulation studies. For example, with ρ
varying, median computing times for our method (including constructing candidate tuning
parameter sets and validation) were 47.48, 52.61, 55.70, 60.81, and 80.30 minutes for ρ ∈
{0.0, 0.1, 0.3, 0.5, 0.7}, respectively, using six candidate values for λΩ, six for α, and 30 for
λβ for each unique pair (λΩ, α). These experiments were run on HiperGator 2.0 at the
University of Florida using a single CPU per replication. Of course, were computing times a
concern for a practitioner, computing (2.3) over a grid of candidate tuning parameters could
be trivially parallelized. More details on our implementation, including computing times for
other simulation scenarios, can be found in Section 1 of the Supplementary Material.

4. Genome-wide multi-tissue joint eQTL mapping in GTEx. In our analysis of
the GTEx data, we focus on 29 types of human tissues (see Figure 1). These are tissues which
(i) are not sex-specific, (ii) had PEER factors and other covariates available from GTEx, and
(iii) are not brain or pituitary gland tissues. Brain and pituitary tissues were omitted because
subjects which had expression measured in brain tissue often had no expression measured
in the other tissues and vice-versa. The gene expression we model is log-transformed RNA-
seq counts which have been adjusted for PEER factors. Further details about our data
processing are provided in the Supplementary Materials [26].

For each gene, we considered only local eQTLs (cis-SNPs with MAF ≥ .05), which we
defined as SNPs within 500kb of the transcription start or end site of the gene. For each
gene, we further prune cis-SNPs until no two SNPs have absolute correlation greater than
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0.95.
We performed joint eQTL mapping using the three approaches described in the Sim-

ulation studies subsection. Following a similar approach to Hu et al. [14], we measured
prediction accuracy using a five-fold cross validation procedure. That is, each of the five
folds was once treated as a testing fold. Of the remaining four folds, three were used to
train the model and one was used as a validation set to select tuning parameters. Tuning
parameters were selected to maximize the average R2 on the validation set. We repeat this
procedure for each of the five folds, with each fold once serving as testing fold and once
serving as validation fold.

Results are displayed in Figure 3, (a) and (b). In Figure 3(a), our method significantly
improves on the tissue-by-tissue elastic net in terms of prediction accuracy, especially for
those tissue types with small sample sizes. For example, in the tissue with the smallest
sample size (Minor Salivary Gland), the average testing-fold R2 for tissue-by-tissue elastic
net was less than −0.05, indicating that this approach performed significantly worse than
the null model in terms of expression prediction. This suggests that for small sample sizes,
the tissue-by-tissue elastic net likely overfits to the training data. Our method, on the
other hand, had average testing fold R2 greater than 0.02 in all tissues, including Minor
Salivary Gland. In Figure 3(b), we also compare Cov-MT to MT and see that incorporating
an estimate of the precision matrix Ω∗ improves testing fold R2 averaged over genes and
folds by 6.78% on the tissues we analyzed. Both MT and Cov-MT select tuning parameters to
maximize validation set R2 averaged over all tissues, which may partly explain why Cov-MT

improves the R2 on tissues with larger sample sizes – given that these tissues have the
highest frequency in the validation folds, they will play the largest role in computing R2

averaged over all tissues.
In Figure 4 of the Supplementary Material, we display differences in testing-fold R2

averaged across all tissues and folds for each gene we analyzed. Our method improved
on tissue-by-tissue elastic net for nearly every genes; whereas we improved over MT for a
majority of genes. In particular, the summary statistics for the difference displayed in Figure
3(d) (Cov-MT average minus MT average) are: min = −.0244, Q1 = 8.03×10−5, Q2 = 0.00174,
Mean = 0.00197, Q3 = 0.00370, and max = 0.0245.

In Figure 5 of the Supplementary Material, we display a heatmap of how frequently
our method estimated two tissues to be conditionally dependent. As one would expect,
biologically related tissues often had nonzero estimated conditional correlations. For exam-
ple, the three Esophagus tissues have some of the largest numbers of genes with nonzero
tissue-tissue conditional correlations. Similarly, Adipose - Subcantaneous and Skin - Not
Sun Exposed were often conditionally dependent, as were Skin - Not Sun Exposed and
Skin - Sun Exposed. Interestingly, many tissues rarely had nonzero estimated conditional
correlations with any other tissue: for example, see Small Intestine - Terminal Iluem, Liver,
Cells - EBV-transformed lymphocytes, and Minor Salivary Gland.

Another important point of scientific interest is the frequency with which two tissue types
share eQTLs. In Figure 4, we display a heatmap displaying the proportion of eQTLs shared
between pairs of tissues. The most notable result is that our method (and the method of Hu
et al. [14]) tend to estimate that the majority of eQTLs are shared across tissue types. For
example, the first row of Figure 4 indicates that of all estimated Adipose - Subcantaneous
eQTLs, approximately 96.3% were also estimated to be eQTLs for Adipose - Visceral and
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Fig 4. A heatmap of the proportions of eQTLs shared across tissue types. For a particular row, the intensities
correspond to the proportions of total eQTLs for that tissue which are also an eQTL for the column-tissue.
For example, the first row indicates that of all Adipose - Subcantaneous eQTLs, approximately 96.3% are
also eQTLs for Adipose - Visceral and approximately 93.0% are also eQTLs for Adrenal Gland.

approximately 93.0% were also estimated to be eQTLs for Adrenal Gland. Notably, Minor
Salivary Gland and Cells-EBV-transformed lymphocytes were the two tissues which had
relatively low proportions of eQTLs shared with each of the other tissues (indicated by the
light vertical bands). This may be partly due to the small sample sizes for both of these
tissue types, which often led to fewer estimated eQTLs overall.

5. S-MultiXcan analysis of UKBiobank data.

5.1. Multi-tissue transciptome-wide association studies. To demonstrate that our im-
proved multi-tissue joint eQTL mapping method can lead to a higher number of novel
gene-level TWAS discoveries, we performed a summary-MultiXcan (S-MultiXcan) analysis
following the method proposed in Barbeira et al. [2]. To obtain eQTL weights from the
full GTEx dataset, we re-estimated these coefficients using the complete dataset based on
the tuning parameters which had the largest average left-out fold R2. We then downloaded
UKBiobank GWAS summary statistics from the Neale [29] lab for four complex traits: two
binary (asthma and heart attack) and two continuous (haemoglobin and platelet count).
These traits were selected as we thought no single tissue-type was an obvious candidate for a
single-tissue summary-PrediXcan analysis. To compute the LD-matrices needed to perform
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the S-MultiXcan analysis, we used genome-wide genotype data obtained from the Genetics
and Epidemiology of Colorectal Cancer Consortium (GECCO), which was imputed using
the Haplotype Reference Consortium (HRC) reference panel. For each of the three eQTL
weight set estimation methods, we tested only those genes which had test set R2 averaged
over all folds and tissues greater than zero. The number of genes tested were 10364, 9393,
4608 for Cov-MT, MT, and EN respectively. When testing for association with each phenotype,
we adjust for multiple tests using a Bonferonni correction. Thus, EN, which has a smaller
number of genes tested, also has a more liberal p-value cutoff.

For each gene, we recorded the S-MultiXcan p-value based on the weights computed using
our method, the exact version of the method proposed by Hu et al. [14], and tissue-by-tissue
elastic net (Cov-MT, MT, and EN, respectively). To validate our findings, we also recorded
(a) the minimum GWAS p-value amongst the SNPs which had nonzero weights across the
methods considered for each gene, and (b) the minimum GWAS p-value of any SNP with
500kb of the gene transcription start or end site. This way, for any S-MultiXcan discovery,
we verified whether this discovery could be attributed to a genome-wide significant eQTL
or SNP (based on (a) or (b), respectively) defined as p-value < 5 × 10−8 or represents a
potentially novel finding. In Table 1, we display the total number of discoveries and the
number of novel discoveries for two binary traits and two continuous traits.

The weight set obtained using MT, the exact version of the method propose by Hu et al.
[14], tended to include a larger number of SNPs. Conversely, our method, which yielded a
slightly smaller set of SNPs, has a similar or larger number of significant discoveries than MT.
Further, our method also led to more discoveries which could not be attributed to a GWAS
associated eQTL or SNP genotype. Focusing on the phenotype heart attack, our method
identified 16 significant genes: nine did not have an estimated eQTL reaching genome-wide
significance, and one had no cis-SNPs reaching genome-wide significance. In comparison, MT
identified 14 genes, among which six and zero gene(s) had no estimated eQTLs or cis-SNPs
reaching genome-wide significance, respectively. These genes are listed in Table 2, along
with phenotypes with which these genes have been associated in previous GWAS studies
(p-value < 5×10−8) [3]. Notably, most of these genes are associated with phenotypes related
with heart diseases such as coronary artery disease, cholesterol, high-density lipoproteins
(HDL), low-density lipoproteins (LDL), and systolic blood pressure. When using the more
stringent definition of a novel finding based on the p-value of all cis-SNP genotypes, our
method still identifies a higher number of novel discoveries for heart attack, platelet count,
and haemoglobin count. In the following section, we further discuss the genes associated
with heart attack which could not be attributed to a genome-wide significant eQTL.

5.2. S-MultiXcan results. We have identified multiple genes associated with the occur-
rence of a heart attack that would be missed in a SNP-by-SNP association analysis. In-
terestingly, many of these genes are associated with phenotypes related to heart attack in
previous GWAS, or are known to have biological functions associated with the occurrence of
a heart attack and coronary artery disease. A heart attack occurs when an artery supplying
the heart with blood and oxygen becomes blocked. This is closely related to more broadly
defined coronary artery disease, which is the narrowing or blockage of the coronary arter-
ies that leads to reduction of the amount of oxygen and nutrients delivered to the heart.
Coronary artery disease tends to develop when cholesterol or fatty deposits builds along the
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Table 1
Number of significant discoveries using different eQTL weights for two binary and two continuous

phenotypes. The bottommost two rows (with superscript ∗) denote the number of discoveries which did not
have an estimated eQTL reaching genome-wide significance (left) and did not have any cis-SNP reaching

genome-wide significance (right).

Asthma Heart Attack Haemoglobin Platelet

Cov-MT 7 16 751 1255
MT 8 14 734 1232
EN 11 9 586 934

Cov-MT∗ 4/2 9/1 150/56 182/45
MT∗ 3/2 6/0 146/54 162/39
EN∗ 3/1 3/1 81/50 78/39

Table 2
Genes associated with Heart Attack discovered in the S-MultiXcan analysis which could not be attributed to

a GWAS associated eQTL. In the rightmost two columns, we provide the phenotypes with which the
particular gene has been associated before according to the GWAS Catalog as of November 20th, 2020 [3]

for all the associations with p-value < 5 × 10−8. The phenotypes for each gene are ranked by the number of
times they are associated with this gene (indicated by the numbers in the parenthesis next to the phenotype)
and only top two phenotypes are shown for each gene. The bold/underlined gene was that wherein no SNP

within 500kb of TSS or TES was genome-wide significant (including those not identified as eQTLs).

Gene Chr Region Associated phenotype 1 Associated phenotype 2

AIDA 1 222668013-222713210 Coronary artery disease (1)

FAM117B 2 202634969-202769757 Total cholesterol (2) LDL (2)
ICA1L 2 202773150-202871985 White matter microstructure (7) Urinary albumin-to-creatinine ratio (3)
NBEAL1 2 203014879-203226378 Coronary artery disease (4) Body mass index (2)
WDR12 2 203738984-203879521 Coronary artery disease (3) White matter microstructure (3)

LPL 8 19901717-19967259 Triglycerides (32) HDL (18)

ZBTB39 12 56998836-57006546 Asthma (3) Allergic disease (1)

FURIN 15 90868588-90883458 Systolic blood pressure (8) Schizophrenia (6)
FES 15 90883695-90895776 Systolic blood pressure (7) Diastolic blood pressure (4)

artery walls.
Endothelial dysfunction is a hallmark of coronary artery disease and one gene identified in

our analysis, AIDA, was identified as a coronary artery disease candidate gene by integrative
analysis of vascular endothelial cell genomic features [16]. Several genes we have identified
are involved in different biological processes related with cancer development, implying
some connections due to the hypoxia environment shared by narrowed or blocked coronary
artery and tumor micro-environment. FES, for example, is a well-known cancer related gene
involved in signaling for cell growth. A recent report shows that FURIN inhibits apoptosis
[52]. Finally, there is evidence that ZBTB39 is associated with red cell distribution width
[35, 15], a prognostic marker in both acute and chronic heart failure [43, 47]. In Section 3 of
the Supplementary Material [26], we discuss how these findings may be used for investigating
disease mechanisms in future studies. The p-values for all genes we tested are available for
download at github.com/ajmolstad/MTeQTLResults and as part of the Supplementary
Material [25].
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6. Discussion. In this article, we have proposed a new method for obtaining multi-
tissue eQTL weights. While our method was motivated by the growing popularity of multi-
tissue TWAS using genetically predicted gene expression, it is notable that compared to
tissue-by-tissue elastic net, our method yielded eQTL weights which had higher predic-
tion accuracy in every individual tissue we studied. This suggests that even single-tissue
PrediXcan analyses could be improved using our estimated weight set. Of course, when to
use a multi-tissue test versus a single-tissue test remains an unresolved and important ques-
tion. Our analyses focused on phenotypes for which no individual tissue seemed an obvious
candidate for analyses.

Another natural application of our method is for imputing unmeasured gene expression,
e.g., as was the goal of Wang et al. [46]. Specifically, Wang et al. [46] focused on the case of
imputing missing expression in GTEx in individuals with expression measured in a subset of
tissues. Our method naturally applies to this problem as the conditional expectation of the
missing tissues’ expression from (2.6) is easy to compute given estimates of eQTL weights
and the cross-tissue error covariance matrix. Furthermore, prediction (ellipsoids) intervals
could be constructed using our estimates of the conditional (co)variance of gene expression.
Unlike Wang [45], who preselect eQTLs to be used in their prediction model, our approach
estimates eQTLs and fits the prediction model jointly.

Finally, it would be beneficial to extend our methodology to allow for more heavy-tailed
error distributions. For example, one could relax the normality assumption in (2.1) and
assume that errors have a multivariate t-distribution. One interesting direction along these
lines would modify the method of Chen et al. [5] to handle missing data, which is highly
nontrivial computationally.

Supplementary Material. Appendix. We provide more information about our GTEx
data processing; the complete algorithms used to solve both (2.8) and the exact version of
the estimator of Hu et al. [14]; timing results and additional details about our implemen-
tation; and a simulation study analyzing the the proportion of false positives in PrediXcan
under varying prediction accuracy. Code and results. We provide a user-guide for ac-
cessing our estimated eQTL weights in order to perform multi-tissue MultiXcan analyses
using our weight set. Comprehensive results presented in the article, as well as software to
reproduce the simulation results, are available for download as part of the Supplementary
Material and at github.com/ajmolstad/MTeQTLResults.
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