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1 Algorithm implementation and practical considerations
We recommend selecting tuning parameters by minimizing out-of-fold prediction error in V -fold
cross-validation. In our implementation, we use the tuning parameter pair

arg min
τ,λ

V∑
v=1

‖Yv − Xvβ̂−v,λ,τ‖2F ,

where Yv are the responses in the vth fold centered by the responses outside the vth fold, Xv are
the predictors in the vth fold centered by the predictors outside the vth fold, and β̂−v,λ,τ is the
estimated regression coefficient matrix using the data outside the vth fold with candidate tuning
parameters λ and τ .

The first order conditions, which can be derived from Proposition 1, can be used to select a set
of reasonable candidate tuning parameters for λ. When Pen(β) = |β|1 ≡

∑
j,k |βj,k|, if

λ ≥ 2n−1maxi,j{[X ′Y ]i,jsign([X ′Y ]i,j)},

then β̂ = 0. Thus, for any set of candidate τ , we set λmax = 2n−1maxi,j{[X ′Y ]i,jsign([X ′Y ]i,j)}
and λmin = δλmax. Following Gu et al. (2018), we then set λm = λ

M−m
M−1
max λ

m−1
M−1

min , m = 1, . . . ,M,
where M is the desired number of candidate tuning parameters. We recommend using a coarse
grid of candidate tuning parameters to select τ . In our simulations, we used a subset of τ ∈
{10x : x = 4, 3.75, . . . ,−2.75,−3} and δ = 10−1. For applications where a more refined grid is
desired, we recommend running an initial cross-validation on a coarse grid for τ and then refining
over the tuning parameters which yield small cross-validation prediction error.

*Correspondence: amolstad@ufl.edu
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We also employ warm-start initializations to compute the entire solution path more efficiently
and avoid local minima. With τ fixed, we first compute our estimator for λ1 after initializing the
algorithm at the matrix of zeros. Then, for λ2, we initialize the algorithm at the solution obtained
for λ1, and so on.

2 Proofs

2.1 Proof of Theorem 1
We observe n independent realizations of the random pair (Yi,Xi) where each pair is generated
according to the data generating model

Yi = β′∗zi + εi, Xi = zi + Ui, i = 1, . . . , n

where each zi ∈ Rp is nonrandom. We assume that the Ui ∈ Rp and εi ∈ Rq are independent, mean
zero random variables with (co)variance σ2

∗uIp and γ2∗Iq respectively. Let U = (U1, . . . ,Un)′ ∈
Rn×q, X = (X1, . . . ,Xn)′ ∈ Rn×p, Y = (Y1, . . . ,Yn)′ ∈ Rn×q, Z = (z1, . . . , zn) ∈ Rn×p, and
ε = (ε1, . . . , εn)′ ∈ Rn×q. It follows that

E(X ′Y ) = nΣZβ∗, E(X ′X) = nΣZ + nσ2
∗uIp, E(Y ′Y ) = nβ′∗ΣZβ∗ + nγ2∗Iq, (1)

where ΣZ = n−1Z ′Z.
We now prove the result of Theorem 1. We want to show E [∇Fτ (β)] = 0. Note that the

expectation is taken with respect to the joint distribution of (Y,X). Notice, letting Ω = β′∗β∗+τIq,
using the result of Proposition 1,

E [∇Fτ (β∗)] = −2n−1E
[
−β∗Ω−1(Y −Xβ∗)

′(Y −Xβ∗)Ω
−1 − Y ′XΩ−1 +X ′Xβ∗Ω

−1]
= −2n−1E

[
−β∗Ω−1(Y ′Y − Y ′Xβ∗ − β′∗X ′Y + β′∗X

′Xβ∗)Ω
−1 − Y ′XΩ−1 +X ′Xβ∗Ω

−1]
and using the linearity of expectation and the expectations from (1)

∝ −β∗Ω−1β∗ΣZβ∗Ω
−1 − γ2∗β∗Ω−1Ω−1 + β∗Ω

−1β∗ΣZβ∗Ω
−1 + β∗Ω

−1β∗ΣZβ∗Ω
−1

− β∗Ω−1β′∗ΣZβ∗Ω
−1 − σ2

∗uβ∗Ω
−1β′∗β∗Ω

−1 − ΣZβ∗Ω
−1 + ΣZβ∗Ω

−1 + σ2
∗uβ∗Ω

−1

= −γ2∗β∗Ω−1Ω−1 − σ2
∗uβ∗Ω

−1β′∗β∗Ω
−1 + σ2

∗uβ∗Ω
−1

= −β∗Ω−1(γ2∗I + σ2
∗uβ
′
∗β∗)Ω

−1 + σ2
∗uβ∗Ω

−1 (2)

Thus, if we can select τ such that

(γ2∗Iq + σ2
∗uβ
′
∗β∗)(β

′
∗β∗ + τI)−1 = σ2

∗uIq, (3)

then (2) is equal to zero, from which the conclusion follows. Right multiplying both sides of(3) by
(β′∗β∗ + τI),

σ2
∗uβ
′
∗β∗ + γ2∗Iq = σ2

∗uβ
′
∗β∗ + σ2

∗uτIq,

it follows that if τ = γ2∗
σ2
∗u

, then (3) holds, from which the result follows.
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2.2 Proof of Proposition 1
We first compute the gradient of Fτ where

Fτ (β) = tr
{

[β′β + τIq]
−1
n−1(Y −Xβ)′(Y −Xβ)

}
.

In the first step, we apply the product rule for matrix-valued functions. Let Q1 = [β′β + τIq] and
Q2 = n−1(Y −Xβ)′(Y −Xβ), so that we can write the differential

dtr
{

[β′β + τIq]
−1
n−1(Y −Xβ)′(Y −Xβ)

}
= tr

{
(dQ−11 )Q2 +Q−11 (dQ2)

}
(4)

= tr
{

(dQ−11 )Q2

}
+ tr

{
Q−11 (dQ2)

}
≡ T1 + T2

where (4) follows from Chapter 8.1, (15) and (20), of Magnus and Neudecker (1988). Then,
dealing first with T1,

T1 = tr
{

(dQ−11 )Q2

}
= tr

{
−Q−11 (dQ1)Q

−1
1 Q2

}
= tr

{
−Q−11 Q2Q

−1
1 (dQ1)

}
≡ tr {−Q3(dQ1)}

where, letting Q3 = Q−11 Q2Q
−1
1 , the second equality comes from Chapter 8.4, (1), of Magnus and

Neudecker (1988). Expanding Q1 and using that Q3 is symmetric,

= tr {−Q3(dQ1)} = tr {−Q3d(β′β + τIq)} = tr {−2Q3β
′(dβ)}+ C1 (5)

where C1 is a constant such that C1

dβ
= 0. Thus, because 1

dX
tr {A(dX)} = A′, combining (5) and

the definition of Q3, it follows that

T1
dβ

=
tr {−2Q3β

′(dβ)}
dβ

= −2n−1β(β′β + τIq)
−1(Y −Xβ)′(Y −Xβ)(β′β + τIq)

−1.

We now simplify T2. Recalling that Q1 is symmetric,

T2 = tr
{
Q−11 (dQ2)

}
= tr

{
Q−11 d {(Y −Xβ)′(Y −Xβ)}

}
= tr

{
Q−11 d(−Y ′Xβ − β′X ′Y + β′X ′Xβ)

}
+ C2

= tr
{
−Q−11 Y ′X(dβ)−Q−11 (dβ)′X ′Y +Q1(dβ)′X ′Xβ +Q1β

′X ′X(dβ)
}

+ C2

= tr
{
−2Q−11 Y ′X(dβ) + 2Q1β

′X ′X(dβ)
}

+ C2 (6)

where C2 is a constant such that C2

dβ
= 0. Finally, using (6), it follows that

T2
dβ

=
tr
{
−2Q−11 Y ′X(dβ) + 2Q1β

′X ′X(dβ)
}

dβ
= −2n−1X ′Y [β′β + τIq]

−1
+2n−1X ′Xβ [β′β + τIq]

−1
.
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Thus,

∇Fτ (β) =
T1 + T2

dβ
= −2n−1βQ−11 (Y −Xβ)′(Y −Xβ)Q−11 − 2n−1X ′Y Q−11 + 2n−1X ′XβQ−11 ,

which establishes the first part of Proposition 1.

We now prove the Lipschitz continuity of ∇Fτ over bounded sets Dκ = {β : ‖β‖F ≤ κ} for
κ <∞. To establish Lipschitz continuity we show that for fixed κ, there exists a universal constant
Lκ such that

‖∇Fτ (β)−∇Fτ (β̃)‖2 ≤ Lκ‖β − β̃‖2,
for all β ∈ Dκ and β̃ ∈ Dκ where ‖ · ‖2 denotes the spectral norm. Let Q̃1 = β̃′β̃ + τIq.
Throughout this section, let ϕ1(A) denote the largest singular value of A. Implicitly, we assume
that ‖X ′X‖2 = ϕ1(X

′X), ‖X ′Y ‖2 = ϕ1(X
′Y ) and ‖Y ′Y ‖2 = ϕ1(Y

′Y ) are bounded. From the
triangle inequality, it follows that

‖∇Fτ (β)−∇Fτ (β̃)‖2
= ‖ − 2n−1βQ−11 (Y −Xβ)′(Y −Xβ)Q−11 + 2n−1β̃Q̃−11 (Y −Xβ̃)′(Y −Xβ̃)Q̃−11

− 2n−1X ′Y (Q−11 − Q̃−11 ) + 2n−1X ′X(βQ−11 − β̃Q̃−11 )‖2
≤ 2n−1‖ − βQ−11 (Y −Xβ)′(Y −Xβ)Q−11 + β̃Q̃−11 (Y −Xβ̃)′(Y −Xβ̃)Q̃−11 ‖2

+ 2n−1‖X ′Y (Q−11 − Q̃−11 )‖2 + 2n−1‖X ′X(βQ−11 − β̃Q̃−11 )‖2
≡ 2n−1(A1 + A2 + A3). (7)

We start by bounding A3 from (7):

A3 = ‖X ′X(βQ−11 − β̃Q̃−11 )‖2
≤ ‖X ′X‖2‖βQ−11 − β̃Q̃−11 ‖2 (8)

≤ ‖X ′X‖2‖βQ−11 − β̃Q−11 ‖2 + ‖X ′X‖2‖β̃Q−11 − β̃Q̃−11 ‖2 (9)

≤ ‖X ′X‖2‖Q−11 ‖2‖β − β̃‖2 + ‖X ′X‖2‖β̃‖2‖Q−11 − Q̃−11 ‖2. (10)

where (8) and (10) follow from submultiplicative property of the spectral norm, and (9) follows
from the triangle inequality. We then bound ‖Q−11 −Q̃−11 ‖2. Recalling thatQ1 and Q̃1 are invertible,
it follows that

‖Q−11 − Q̃−11 ‖2 = ‖Q−11 (Q1 − Q̃1)Q̃
−1
1 ‖2

≤ ‖Q−11 ‖2‖Q̃−11 ‖2‖Q1 − Q̃1‖2 (11)

= ‖Q−11 ‖2‖Q̃−11 ‖2‖β′β − β̃′β̃‖2
≤ ‖Q−11 ‖2‖Q̃−11 ‖2‖β′β − β̃′β‖2 + ‖Q−11 ‖2‖Q̃−11 ‖2‖β̃′β − β̃′β̃‖2 (12)

≤ ‖Q−11 ‖2‖Q̃−11 ‖2‖β‖2‖β − β̃‖2 + ‖Q−11 ‖2‖Q̃−11 ‖2‖β̃‖2‖β − β̃‖2 (13)
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where (11) and (13) follow from the sub-multiplicative property of the spectral norm; and (12)
follows from the triangle inequality. Notice, we can bound ‖Q−11 ‖2:

‖Q−11 ‖2 = ϕ1(Q
−1
1 ) = [ϕq(Q1)]

−1 = [ϕq(β
′β + τIq)]

−1 ≤ τ−1. (14)

Hence, ‖Q−11 ‖2 ≤ τ−1 and by the same argument ‖Q̃−11 ‖2 ≤ τ−1; and by definition of Dκ, ‖β‖2 ≤
‖β‖F ≤ κ and ‖β̃‖2 ≤ ‖β̃‖F ≤ κ. Thus, from (13),

‖Q−11 − Q̃−11 ‖2 ≤ 2τ−2κ‖β − β̃‖2, (15)

and consequently, combining (10) and (15),

A3 ≤ τ−1ϕ1(X
′X)‖β − β̃‖2 + 2κ2τ−2ϕ1(X

′X)‖β − β̃‖2 (16)

= ϕ1(X
′X)(τ−1 + 2κ2τ−2)‖β − β̃‖2 ≡ K3‖β − β̃‖2. (17)

The bound forA2 = ‖X ′Y (Q−11 −Q̃−11 )‖2 follows immediately from the submultiplicative property
of the spectral norm and (15):

‖X ′Y (Q−11 − Q̃−11 )‖2 ≤ ‖X ′Y ‖2‖Q−11 − Q̃−11 ‖2 ≤ 2τ−2κ‖X ′Y ‖2‖β− β̃‖2 ≡ K2‖β− β̃‖F (18)

Then, to bound A1, we start by using the triangle inequality:

A1 = ‖ − βQ−11 (Y −Xβ)′(Y −Xβ)Q−11 + β̃Q̃−11 (Y −Xβ̃)′(Y −Xβ̃)Q̃−11 ‖2
≤ ‖βQ−11 Y ′Y Q−11 − β̃Q̃−11 Y ′Y Q̃−11 ‖2 + ‖βQ−11 Y ′XβQ−11 − β̃Q̃−11 Y ′Xβ̃Q̃−11 ‖2
+ ‖βQ−11 β′X ′Y Q−11 − β̃Q̃−11 β̃′X ′Y Q̃−11 ‖2 + ‖βQ−11 β′X ′XβQ−11 − β̃Q̃−11 β̃′X ′Xβ̃Q̃−11 ‖2
≡ A11 + A12 + A13 + A14. (19)

We bound each term in (19). Starting with A11,

A11 = ‖βQ−11 Y ′Y Q−11 − β̃Q̃−11 Y ′Y Q̃−11 ‖2
≤ ‖βQ−11 Y ′Y Q−11 − β̃Q−11 Y ′Y Q−11 ‖2 + ‖β̃Q−11 Y ′Y Q−11 − β̃Q̃−11 Y ′Y Q̃−11 ‖2 (20)

≤ ‖β − β̃‖2‖Q−11 ‖22‖Y ′Y ‖2 + ‖β̃‖2‖Q−11 Y ′Y Q−11 − Q̃−11 Y ′Y Q̃−11 ‖2 (21)

≤ ‖β − β̃‖2‖Q−11 ‖22‖Y ′Y ‖2 + ‖β̃‖2‖Q−11 − Q̃−11 ‖2‖Y ′Y ‖2‖Q−11 ‖2
+ ‖β̃‖2‖Q̃−11 ‖2‖Y ′Y ‖2‖Q−11 − Q̃−11 ‖2 (22)

where (20) and (22) follow from the triangle inequality; and (21) follows from the submultiplicative
property of the spectral norm. Using the bound established for ‖Q−11 − Q̃−11 ‖2 in (15) along with
(22), it follows that

A11 ≤ τ−2ϕ1(Y
′Y )‖β − β̃‖2 + 4κ2ϕ1(Y

′Y )τ−3‖β − β̃‖2 ≡ K11‖β − β̃‖2. (23)
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Similarly, bounding A12,

A12 = ‖βQ−11 Y ′XβQ−11 − β̃Q̃−11 Y ′Xβ̃Q̃−11 ‖2
≤ ‖βQ−11 Y ′XβQ−11 − β̃Q−11 Y ′XβQ−11 ‖2 + ‖β̃Q−11 Y ′XβQ−11 − β̃Q̃−11 Y ′Xβ̃Q̃−11 ‖2 (24)

≤ ‖β − β̃‖2‖Q−11 ‖22‖Y ′X‖2‖β‖2 + ‖β̃‖2‖Q−11 Y ′XβQ−11 − Q̃−11 Y ′Xβ̃Q̃−11 ‖2 (25)

≤ ‖β − β̃‖2‖Q−11 ‖22‖Y ′X‖2‖β‖2 + ‖β̃‖2‖Q−11 Y ′XβQ−11 − Q̃−11 Y ′XβQ−11 ‖2
+ ‖β̃‖2‖Q̃−11 Y ′XβQ−11 − Q̃−11 Y ′Xβ̃Q̃−11 ‖2 (26)

≤ ‖β − β̃‖2‖Q−11 ‖22‖Y ′X‖2‖β‖2 + ‖β̃‖2‖Q−11 − Q̃−11 ‖2‖Y ′X‖2‖β‖2‖Q−11 ‖2
+ ‖β̃‖2‖Q̃−11 ‖2‖Y ′X‖2‖βQ−11 − β̃Q̃−11 ‖2 (27)

where (24) and (26) follow from the triangle inequality; and (25) and (27) follow from the sub-
multiplicative property of the spectral norm. Thus, by the bound for A3, e.g., from (8), ‖βQ−11 −
β̃Q̃−11 ‖2 ≤ [ϕ1(X

′X)]−1K3‖β − β̃‖2, the bound for (15), and the bound in (27),

A12 ≤ τ−2ϕ1(Y
′X)κ‖β − β̃‖2 + 2ϕ1(Y

′X)κ3τ−3‖β − β̃‖2 + κτ−1ϕ1(X
′Y )[ϕ1(X

′X)]−1K3‖β − β̃‖2
≡ K12‖β − β̃‖2. (28)

Next, we bound A13:

A13 = ‖βQ−11 β′X ′Y Q−11 − β̃Q̃−11 β̃′X ′Y Q̃−11 ‖2
≤ ‖βQ−11 β′X ′Y Q−11 − β̃Q−11 β′X ′Y Q−11 ‖2

+ ‖β̃Q−11 β′X ′Y Q−11 − β̃Q̃−11 β̃′X ′Y Q̃−11 ‖2 (29)

≤ ‖Q−11 ‖22‖β‖2‖X ′Y ‖2‖β − β̃‖2 + ‖β̃‖2‖Q−11 β′X ′Y Q−11 − Q̃−11 β̃′X ′Y Q̃−11 ‖2 (30)

≤ ‖Q−11 ‖22‖β‖2‖X ′Y ‖2‖β − β̃‖2 + ‖β̃‖2‖Q−11 β′X ′Y Q−11 − Q̃−11 β̃′X ′Y Q−11 ‖2
+ ‖β̃‖2‖Q̃−11 β̃′X ′Y Q−11 − Q̃−11 β̃′X ′Y Q̃−11 ‖2 (31)

≤ ‖Q−11 ‖22‖β‖2‖X ′Y ‖2‖β − β̃‖2 + ‖β̃‖2‖βQ−11 − β̃Q̃−11 ‖2‖X ′Y ‖2‖Q−11 ‖2
+ ‖β̃‖2‖Q̃−11 ‖2‖β̃‖2‖X ′Y ‖2‖Q−11 − Q̃−11 ‖2 (32)

where (29) and (31) follow from the triangle inequality; and (30) and (32) follow from the submul-
tiplicative property of the spectral norm. Then, using ‖βQ−11 − β̃Q̃−11 ‖2 ≤ ϕ1(X

′X)−1K2‖β− β̃‖2
and the bound in (15), it follows from (32) that

A13 ≤ τ−2κϕ1(X
′Y )‖β − β̃‖2 + κϕ1(X

′Y )τ−1[ϕ1(X
′X)]−1K3‖β − β̃‖2 + 2κ3τ−3ϕ1(X

′Y )‖β − β̃‖2
= K13‖β − β̃‖2. (33)
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Finally, we bound A14:

A14 = ‖βQ−11 β′X ′XβQ−11 − β̃Q̃−11 β̃′X ′Xβ̃Q̃−11 ‖2
≤ ‖βQ−11 β′X ′XβQ−11 − β̃Q−11 β′X ′XβQ−11 ‖2

+ ‖β̃Q−11 β′X ′XβQ−11 − β̃Q̃−11 β̃′X ′Xβ̃Q̃−11 ‖2 (34)

≤ ‖β − β̃‖2‖Q−11 ‖22‖β‖22‖X ′X‖2 + ‖β̃‖2‖Q−11 β′X ′XβQ−11 − β̃Q̃−11 β̃′X ′Xβ̃Q̃−11 ‖2 (35)

≤ ‖β − β̃‖2‖Q−11 ‖22‖β‖22‖X ′X‖2
+ ‖β̃‖2‖Q−11 β′X ′XβQ−11 − Q̃−11 β̃′X ′XβQ−11 ‖2
+ ‖β̃‖2‖Q̃−11 β̃′X ′XβQ−11 − Q̃−11 β̃′X ′Xβ̃Q̃−11 ‖2 (36)

≤ ‖β − β̃‖2‖Q−11 ‖22‖β‖22‖X ′X‖2 + ‖β̃‖2‖βQ−11 − β̃Q̃−11 ‖2‖X ′X‖2‖β‖2‖Q−11 ‖2
+ ‖β̃‖2‖Q̃−11 ‖2‖β̃‖2‖X ′X‖2‖βQ−11 − β̃Q̃−11 ‖2 (37)

where (34) and (36) follow from the triangle inequality; and (35) and (37) follow from the submul-
tiplicative property of the spectral norm. Hence, applying ‖βQ−11 −β̃Q̃−11 ‖2 ≤ ϕ1(X

′X)−1K2‖β−
β̃‖2 and (15),

≤ τ−2κ2ϕ1(X
′X)‖β − β̃‖2 + κ2τ−1K3‖β − β̃‖2‖+ κ2τ−1K3‖β − β̃‖2

≡ K14‖β − β̃‖2. (38)

Thus, combining (23), (28), (33), (38), (18), and (16),

‖∇Fτ (β)−∇Fτ (β̃)‖2 ≤ 2n−1(K11 +K12 +K13 +K14 +K2 +K3)‖β − β̃‖2,

where K11, K12, K13, K14, K2, and K3 are constants depending only on τ , κ, X and Y , which
verifies the claim.

3 Handling incomplete or missing responses
We can also apply our method to the case that the response variable Y has entries missing at ran-
dom. Fitting the multivariate response linear regression model with missing responses is especially
difficult since standard estimators of Σ∗ do not apply. However, under our proposed parametric link
and proposed weighted residual sum of squares criterion, we can construct an approximation to our
estimator.

For this scenario, we propose a modified version of Fτ which uses only the observed data. Let
Oi = {j : Yij is non-missing} for i = 1, . . . , n. We propose the observed-data weighted residual
sum of squares criterion

Gτ,O(β) = n−1
n∑
i=1

{∑
j∈Oi

∑
k∈Oi

(Yij − β′jXi)(Yik − β′kXi)[(β
′β + τI)−1]j,k

}
, (39)
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where, applying the Woodbury identity,

[(β′β + τI)−1]j,k =

{
−τ−2β′j[Ip + τ−1ββ′]−1βk : j 6= k

τ−1 − τ−2β′k[Ip + τ−1ββ′]−1βk : j = k
.

As with Fτ , the weighted residual sum of squares criterion in (39) can be used to define a new
class of penalized estimators:

arg min
β∈Rp×q

{
Gτ,O(β) +

λ

τ
Pen(β)

}
. (40)

The function Gτ,O is differentiable with respect to β, and thus, we can apply the accelerated
proximal gradient descent scheme from Algorithm 1 to compute estimators from this class.

As with our proposed estimator, as τ → ∞, the estimator (40) tends towards the observed
data penalized least squares criterion. That is, if the penalty is separable in the components of β
(e.g., Pen(β) = |β|1), then (40) would tend towards q separate penalized regressions with the jth
regression consisting of nj samples for j = 1, . . . , q.

4 Maximum likelihood estimation

4.1 Blockwise coordinate descent algorithm
In this section, we derive an algorithm to compute the maximum likelihood estimator described in
(3). To solve this problem, we propose to use a blockwise coordinate descent scheme. First, we
fix the variance parameters (σ2

1, σ
2
2) and minimize with respect to β. Then, we fix β and minimize

with respect to the variance parameters. This is repeated iteratively until the objective function
converges.

To solve for β, we use gradient descent. Although this problem is non-convex, first order
algorithms can perform well in such settings. First, we derive the following:

∇βtr{n−1(Y −Xβ)(σ2
1β
′β + σ2

2Iq)
−1(Y −Xβ)′}+∇β log det(σ2

1β
′β + σ2

2Iq).

By the logic applied in the proof of Proposition 1,

∇βtr{n−1(Y −Xβ)(σ2
1β
′β + σ2

2Iq)
−1(Y −Xβ)′}

= − 2

σ2
1n
βΩ−1β (Y −Xβ)′(Y −Xβ)Ω−1β +

2

σ2
1n
X ′Y Ω−1β +

2

σ2
1n
X ′XβΩ−1β

where
Ωβ =

(
β′β + σ2

2σ
−2
1 Iq

)
.

Then, we must compute ∇β log det(σ2
1β
′β + σ2

2Iq). Using the same approach as in the proof of

8



Proposition 1, with differential rules coming from Magnus and Neudecker (1988),

d log det(σ2
1β
′β + σ2

2Iq) = tr
{(
σ2
1β
′β + σ2

2Iq
)−1

d
(
σ2
1β
′β + σ2

2Iq
)}

= tr
{
σ2
1

(
σ2
1β
′β + σ2

2Iq
)−1

d(β′β)
}

= tr
{

2σ2
1

(
σ2
1β
′β + σ2

2Iq
)−1

β′dβ
}

= 2σ2
1β
(
σ2
1β
′β + σ2

2Iq
)−1

Putting it all together, we have

∇βtr{n−1(Y −Xβ)(σ2
1β
′β + σ2

2Iq)
−1(Y −Xβ)′}+∇β log det(σ2

1β
′β + σ2

2Iq)

= − 2

σ2
1n
βΩ−1β (Y −Xβ)′(Y −Xβ)Ω−1β +

2

σ2
1n
X ′Y Ω−1β +

2

σ2
1n
X ′XβΩ−1β + 2σ2

1

(
σ2
1β
′β + σ2

2Iq
)−1

= − 2

σ2
1n
βΩ−1β (Y −Xβ)′(Y −Xβ)Ω−1β +

2

σ2
1n
X ′Y Ω−1β +

2

σ2
1n
X ′XβΩ−1β + 2βΩ−1β

≡ ∇G(β;σ2
1, σ

2
2)

Then, we iteratively update β using β(t+1) = β(t) − 1
ρ
∇G(β(t);σ2

1, σ
2
2) where ρ is a step size for

t = 1, 2, . . . until the objective function value converges.
Solving for σ2

1 and σ2
2 with β fixed is only slightly less challenging as we can use two dimen-

sional solvers. Notice

tr{n−1(Y −Xβ)(σ2
1β
′β + σ2

2Iq)
−1(Y −Xβ)′}+ log det(σ2

1β
′β + σ2

2Iq)

= tr{S(σ2
1β
′β + σ2

2Iq)
−1}+ log det(σ2

1β
′β + σ2

2Iq)

where S = n−1(Y −Xβ)′(Y −Xβ). Then, letting UDU ′ be the eigendecomposition of β′β, we
have

= tr
{
SU(σ2

1D + σ2
2Iq)

−1U ′
}

+

q∑
j=1

log(σ2
1Djj + σ2

2)

= tr
{
U ′SU(σ2

1D + σ2
2Iq)

−1}+

q∑
j=1

log(σ2
1Djj + σ2

2)

so that with W = U ′SU and Wjj being the jth diagonal of W ,

= tr
{
W (σ2

1D + σ2
2Iq)

−1}+

q∑
j=1

log(σ2
1Djj + σ2

2)

=

q∑
j=1

(
Wjj

σ2
1Djj + σ2

2

)
+

q∑
j=1

{
log(σ2

1Djj + σ2
2)
}
.

Hence, in our implementation, we use two-dimensional solver optim in R to solve

arg min
σ2
1>0,σ2

2>0

[
q∑
j=1

(
Wjj

σ2
1Djj + σ2

2

)
+

q∑
j=1

{
log(σ2

1Djj + σ2
2)
}]

.
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Figure 1: Contour plots of the negative log-likelihood for β with p = 1, q = 2, n = 10, and varying
values of σ2

1 and σ2
2 .

4.2 Challenges of maximum likelihood estimation
In this section, we discuss why maximum likelihood estimation is challenging and discuss heuris-
tically how our approach avoids some of these issues.

One of the first challenges with estimating β∗ is that the optimization problems, both ours and
maximum likelihood, are non-convex. To show that local minima may indeed be a serious problem
for the maximum likelihood estimator, in Figure 1, we display contour plots of the L1-penalized
negative log-likelihood in a simple example with n = 10, q = 2, and p = 1. The data were
generated from Model 1 of the main manuscript, with σ2

u (here, σ2
1) and γ2∗ (here, σ2

2) equal to one
and three respectively; and β = (−.962,−.292) generated randomly.

As we see in the contour plots in Figure 1, where no penalty is applied (i.e., λ = 0), if the values
of σ2

1 and σ2
2 are poorly initialized, one may end up in a spurious local minimizer. It is important to

recall that when performing maximum likelihood estimation, one must iterate between updating β
and (σ2

1, σ
2
2), so if one update of (σ2

1, σ
2
2) or β leads to a local (rather than global) minimizer, it may

be difficult to recover the global joint minimizer. When penalties are applied, e.g., λ
∑

j,k |βj,k|,
the problem remains: see the contour plots in Figure 2.

To understand how we may avoid this issue with our approach, we display contour plots of
our unpenalized weighted residual sum of squares criterion in Figure 3. We see that when τ is
large, the criterion is effectively convex: this agrees with our intuition as when τ → ∞, our

10
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Figure 2: Contour plots of the penalized negative log-likelihood for β with p = 1, q = 2, n = 10,
and varying values of σ2

1 and σ2
2 .

criterion tends towards least squares. As τ → 0, we notice that there begin to appear local minima.
However, recall that when computing the solution path of our estimator, we compute a sequence
of β with τ decreasing. First, we compute β̂1 with the largest candidate value of τ , τ1. Then we
compute β̂2 with the next largest candidate value of τ , τ2 after initializing the algorithm at β̂1.
Continuing this procedure, we see that, at least in the examples displayed in Figure 3, this would
lead to finding the global minimizer, rather than getting stuck in local minimia. Moreover, unlike
maximum likelihood, we need only solve an optimization problem involving β once for a single
value of τ , rather than requiring some iterative procedure as is needed in maximum likelihood
estimation.

4.3 Comparison to maximum likelihood in low-dimensional settings
In this section, we compare our estimator with τ chosen by cross-validation and λ = 0 to the max-
imum likelihood estimator described above. We also include the ordinary least squares estimator
to serve as a benchmark.

We generate data in exactly the same fashion as Model 1 of the main manuscript, except we
fix n = 50, q = 10 and let p ∈ {10, 15, 20, 25, 30} . We initialize the MLE using σ2

1 = 0.01
and σ2

2 equal to the average variance of the q response variables in the training set. This choice
was based on the contour plots in Figure 1, where we saw that small σ2

1 (relative to σ2
2) led to

11
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Figure 3: Contour plots of the unpenalized weighted residual sum of squares we propose with
p = 1, q = 2, n = 10, and varying values of τ .

fewer local minima. We performed one hundred independent replications, measuring model error,
latent model, and test set prediction error for each of the three methods. Results are displayed
in Figure 4. We see that in as p approaches n, our method outperforms the MLE, both of which
outperform the ordinary least squares estimator (as would be expected). Part of the mechanism
of this improvement may be that by treating τ as a tuning parameter, there is a small degree of
implicit shrinkage of β̂, which leads to improved performance over the MLE.

5 Reduced rank regression simulations
In this section, we present results from an additional simulation study under the reduced rank
regression data generating model. For one hundred independent replications, we generate data
from Model 4, defined below.

– Model 4. We first generate n independent copies of X ∼ Np(0,Σ∗X) where the (j, k)th entry of
Σ∗X equals 0.7|j−k|. Then, conditional on X = x, we generate a realization of Z,

Z = B∗x+ U,

and conditioning on Z = z, we generate

Y = A∗z + ε,

12
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Figure 4: Results comparing the MLE to our method and ordinary least squares under the data
generating model described in Section 4.3.

where B∗ ∈ R5×p is a randomly generated semiorthogonal matrix (i.e., B∗B′∗ = I5); A∗ ∈ Rq×5

(details below); U ∼ Np(0, σ
2
∗uIp), and ε ∼ Np(0, γ

2
∗Iq). Thus, with β∗ = B′∗A′∗ and rank(β∗) = 5,

E(Y | X = x) = β′∗x, Cov(Y | X = x) = σ2
∗uβ
′
∗β∗ + γ2∗Iq,

with γ2∗ = 3, σ2
∗u varying across settings.

To generate A∗, we randomly assign two elements of each row to be nonzero. These entries
are drawn drawn from a uniform distribution on (0, 10). We then standardize each row to have
euclidean norm equal to

√
15 and randomly assign the normalized nonzero elements a sign. Under

this construction, β′∗β∗ has many entries which are zero, and has diagonals equal to 15, as in the
simulation settings in the main manuscript.

We consider a number of competing methods:

– Ridge-q. The L2 penalized least squares estimator

arg min
β∈Rp×q

{
1

n
‖Y −Xβ‖2F +

q∑
j=1

λj‖β·,j‖22

}
(41)

within tuning parameters λj chosen to minimize prediction error in five-fold cross-validation
for j = 1, . . . , q separately.

– Ridge-1. The estimator defined in (42) except the tuning parameter λj = λ for j =
1, . . . , q with λ chosen to minimize prediction error averaged over the q responses in five-
fold cross-validation.

– NN-MC. The version of our proposed weighted residual sum of squares estimator with
Pen(β) = ‖β‖∗, (i.e., the nuclear norm – the norm which sums of the singular values of its
matrix argument) with tuning parameters λ and τ chosen using the five fold cross-validation
procedure defined Section 1.
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Pen(β) θ = ProxτPen(X) References

|β|1 =
∑

i,j |βi,j| θi,j = max(|Xi,j| − τ, 0)sign(Xi,j) Tibshirani (1996); Rothman et al. (2010)

‖β‖1,2 =
∑

i(
∑

j β
2
i,j)

1/2 θi,· = max
(

1− τ
‖Xi,·‖2 , 0

)
Xi,· Obozinski et al. (2011); Li et al. (2015)

γ1
τ
|β|1 + γ2

τ
‖β‖1,2

(i) Ai,j = max(|Xi,j| − γ1, 0)sign(Xi,j) Peng et al. (2010); Jenatton et al. (2010)
(ii) θi,· = max

(
1− γ2

‖Ai,·‖2 , 0
)
Ai,·

‖β‖∗ =
∑

j ϕj(β)
(i) svd(X) = Uϕ(X)V ′,

Yuan et al. (2007); Chen et al. (2013)
(ii) θ = U [max {ϕ(X)− τI, 0}]V ′

Table 1: Closed form solutions for the proximal operators of convex penalties used in multivariate
response linear regression.

– NN-LS. The nuclear-norm penalized least squares estimator, e.g., Yuan et al. (2007),

arg min
β∈Rp×q

{
1

n
‖Y −Xβ‖2F + λ‖β‖∗

}
(42)

within tuning parameter λ chosen to minimize prediction error in five-fold cross-validation
averaged across the q responses.

– NN-CA. The nuclear-norm penalize variation of CA, the convex approximation to our esti-
mator described in Section 5.

Computation using the nuclear norm penalty is straightforward from the algorithm proposed
in the main manuscript. Specifically, we need only replace the soft-thresholding operator in Algo-
rithm 1 with the proximal operator of the nuclear norm (see Table 1).

For each replication, we record model error, prediction error, and Frobenius norm error as
described in Section 5. We display the results for each of the five methods in Figure 5. We see
that in each setting, NN-MC performs best, with NN-LS performing similarly. Note that although
the differences appear relatively small between methods, this is in part due to the data generating
mechanism: in almost every replication, the performance of NN-MCwas better than that of NN-LS.
Unsurpisingly, the ridge variants and convex approximation to our estimator all perform relatively
poorly.

6 Simulations with τ = γ∗/σ
2
∗u fixed

We also considered including an additional competitor in our simulation studies. This competitor
was introduced to illustrate the usefulness of treating τ as a tuning parameter as opposed to treating
it as the ratio of unknown variance parameters. For this purpose, we reran the simulations from
Section 5 of the main manuscript but included one additional competitor: MC-Or, i.e., the “Oracle”

14
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Figure 5: Log model error, log Frobienus norm error, and log prediction error for the five candidate
methods over one hundred independent replications under Model 4.
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Figure 6: Log model error, log latent model error, and log prediction error for the eight candidate
methods over one hundred independent replications under Model 1.

version of our estimator. This version of our estimator is exactly the same as MC, except τ =
γ∗/σ

2
∗u is fixed throughout. Of course, when σ∗u = 0, this estimator is equivalent to the estimator

Lasso-1, defined in Section 5 of the main manuscript. In all other situations we considered, this
estimator is distinct from MC (although, given the appropriate candidate tuning parameter grid, MC
has MC-Or as a special case). Note that to fit MC-Or, one must still select the tuning parameter
λ, which is done by cross-validation, minimizing validation set prediction error in five-fold cross
validation.
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Results are displayed in Figure 6. As can be seen in the top row, under Model 1, the “Oracle”
version performs similarly to MC when σ2

∗u, the measurement error variance, is relatively small. As
this variance becomes larger, while MC-Or can perform well, in many replication is performs very
poorly. In the bottom row we display results under Model 2, where, we see that in almost every
replication, when σ2

∗u is larger than 0.25, MC-Or does substantially worse than all competitors.
Both of these results can be partly explained by the lack of variable selection accuracy which is
highlighted in Table 3. Specifically, when σ2

∗u is small, the variable selection accuracy of MC-Or
is only slightly worse than the variable selection accuracy of MC. However, as σ2

∗u gets larger, e.g.,
when σ2

∗u = 1 under Model 1, we see that MC-Or has both the lowest TPR and highest FPR
of all methods, meaning it excludes the most important variables and includes the most irrelevant
variables. Together, these results suggest that the additional flexibility which comes from treating τ
as a tuning parameter, even in the case that it has a parameteric interpretation and these parameters
are known, lead to improved shrinkage estimation. This results corraborates another observation:
that when using the CoCo-lasso estimator of Datta and Zou (2017), treating the measurement
error variance as a tuning parameter often leads to better prediction accuracy than using the true
value (which is often unknown in practice).

7 Additional simulation settings
We consider another model similar to Model 3 in the main manuscript, which we call Model 5.
Specifically, in Model 5 we generate data in exactly the same manner as under Model 3, except
we use [Σ∗E]j,k = 0.9|j−k| for (j, k) ∈ {1, . . . , q} × {1, . . . , q}. Just as in Model 3, under Model
4, the mean-covariance parametric link is violated as the error correlations are induced from both
measurement error and correlation of the errors in the “clean” model.

Results under Model 5 are displayed in Figure 7. Just as under Model 3, we see that as γ∗
increases, the performance of our method, MC, approaches the performance of all other methods.
Nonetheless, in every setting we considered here, our method performed as well or better than all
competing methods. These results further suggest that our method is reasonably robust against
violations of the parametric assumption that [Σ∗]j,k ∝ β′∗jβ∗k for j 6= k.

8 Additional Tables and Figures

16



●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

5.4

5.7

6.0

6.3

1 2 3 4 5

γ*
2

lo
g(

M
od

el
 e

rr
or

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

5.00

5.25

5.50

5.75

6.00

1 2 3 4 5

γ*
2

lo
g(

La
te

nt
 m

od
el

 e
rr

or
)

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

2.00

2.25

2.50

1 2 3 4 5

γ*
2

lo
g(

P
re

di
ct

io
n 

er
ro

r)

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5.25

5.50

5.75

6.00

1 2 3 4 5

γ*
2

lo
g(

M
S

E
)

Methods CA CV−CoCo−1 CV−CoCo−q CoCo−1 CoCo−q Lasso−1 Lasso−q MC

Figure 7: Log model error, log latent model error, and log prediction error for the eight candidate
methods over one hundred independent replications under Model 5.
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